

## Aquatic Plant Surveys and Water Quality for Round Lake and Two Tributary Ponds, Eden Prairie, 2013

Round Lake Early Summer Aquatic Plant Survey: June 11, 2013
Round Lake Late Summer Aquatic Plant Survey: August 19, 2013

Prepared for:
City of Eden Prairie
Eden Prairie, Minnesota

Prepared by:
Steve McComas Jo Stuckert Blue Water Science

# Aquatic Plant Surveys and Water Quality for Round Lake and Two Tributary Ponds, Eden Prairie, 2013 

Summary

Round Lake Aquatic Plant Surveys: Two aquatic plant point-intercept surveys were conducted on Round Lake ( 31 acres at normal water levels) in the summer of 2013. The objective of the June 11 survey was to evaluate curlyleaf pondweed and native plants and the objective of the August 19 survey was to look for Eurasian watermilfoil and characterize native plants.

In the early summer of 2013, curlyleaf pondweed was observed in $8 \%$ of the samples (4 sites)(Table S-1) while Eurasian watermilfoil was found at $10 \%$ of the samples ( 5 sample sites) and out to about 8 feet of water depth. Nuisance conditions, where plants were matting at the water surface, were not found in Round Lake.

In August, Eurasian watermilfoil was found at 10\% of the samples (5 sample sites)(Table S-1) and at low densities. Plants grew out to about 10 feet of water in late summer. Submerged plants, dominated by native species, covered about 21 acres of the lake bottom in June and August. Water lilies had abundant growth along much of the shoreline.

Table 1. The percent occurrence of aquatic plants for Round Lake in 2013. Percent occurrence is calculated based on the number of times a plant species occurs at a sampling station divided into the total number of stations for the survey. For example, if milfoil was found in $\mathbf{5}$ out of 10 stations, its percent occurrence would be $\mathbf{5 0 \%}$.

|  | June 11, 2013 <br> \% Occurrence <br> (49 stations) | August 19, 2013 <br> \% Occurrence <br> (49 stations) | Changes from <br> June to August <br> ( + - $)$ |
| :--- | :---: | :---: | :---: |
| White waterlily <br> (Nymphaea tuberosa) | 33 | 47 | + |
| Coontail <br> (Ceratophyllum demersum) <br> Eurasian watermilfoil <br> (Myriophyllum spicaturm) <br> Brittle naiad <br> (Najas minor) | 49 | 65 | + |
| Curlyleaf pondweed <br> (Potamogeton crispus) | 10 | 10 | 0 |
| Stringy pondweed <br> (P. sp) | 0 | 4 | + |
| Filamentous algae | 8 | 0 | - |
| Number of submerged species <br> Aquatic Plant Coverage (acres) | 2 | 4 | + |
| Secchi disc (ft) | 22 | 0 | - |

The aquatic plant community had four species of submerged plants in early season and four species in late summer. This is a relatively low plant diversity condition (Figure S-1).

Eurasian watermilfoil was first observed in Round Lake in 1995 and was found growing at low densities in 2013. The brittle naiad, another non-native aquatic plant, was first found in Round Lake, just north of the public access on June 9, 2010. In 2009, brittle naiad was found in a stormwater pond (08-13-A) that discharges to Round Lake. On August 19, 2013, brittle naiad was again observed in Round Lake at two sample sites. It is not spreading very rapidly.

Curlyleaf pondweed has been found in Round Lake in the past and does not require control at this time. Eurasian watermilfoil was observed with light densities in 2013, and presented no recreational problems.

Because aquatic plants are important for sustaining good water quality, plant surveys should be conducted again in 2014. If milfoil growth is heavy and interferes with recreational lake use, mechanical harvesting is recommended as a control method.


Figure S-1. Early summer total aquatic plant coverage on the left and late summer total aquatic plant coverage on the right for 2011, 2012, and 2013. Green squares = light growth, yellow squares $=$ moderate growth, and red squares $=$ heavy growth.

Round Lake Water Quality: In general, Round Lake has good water quality but it fluctuates from year to year. The water quality for the last eight years is shown in Table S-2. Water clarity (Secchi disc) has been in an unimpaired category for the last eight out of eight years. The total phosphorus concentration has been unimpaired for three out of the last eight years and the chlorophyll concentration has been unimpaired for three out of the last eight years. Over the last couple of years, low water levels may be a factor, but a buildup of phosphorus in the bottom water may also be a factor. Water quality data for 2013 is shown in Table S-3.

Table S-2. Round Lake water quality summary for 2006-2013. Calcium nitrate was added into Round Lake on June 15, 2010. An alum application was conducted on November 12, 2012 in Round Lake.

|  | Secchi Disc <br> $(\mathbf{m})$ | Total Phosphorus <br> $(\mathbf{p p b})$ | ChlorophylI <br> $(\mathbf{p p b})$ | Source |
| :---: | :---: | :---: | :---: | :---: |
| Impaired Criteria | $<1.4$ | $>40$ | $>14$ | MPCA |
| 2006 | 1.9 | 35 | 18 | BWS |
| 2007 | 2.1 | 38 | 16 | BWS |
| 2008 | 2.2 | 30 | 11 | BWS |
| 2009 | 2.1 | 52 | 18 | BWS |
| 2010 | 1.6 | 47 | 29 | RPCWD* |
| 2011 | 2.2 | 42 | 6.5 | BWS |
| 2012 | 1.5 | 44 | 19.4 | BWS |
| 2013 | 2.5 | 43 | 6 | BWS |

*Riley-Purgatory Creek Watershed District

Table S-3. Water quality data for Round Lake, Eden Prairie, Minnesota in 2013.

|  | $\begin{gathered} \text { Secchi } \\ \text { Disc } \\ \text { (feet) } \end{gathered}$ | Total Phos (ppb) | Chl a <br> ( $\mathrm{mg} / \mathrm{I}$ ) | $\begin{aligned} & \text { TSS } \\ & \text { (mg/l) } \end{aligned}$ | Total Alkalinity (mg/l) | Ortho Phos (ppb) | Chloride (mg/l) | Nitrate + Nitrite (mg/l) | Ammonia Nitrogen (mg/l) | Kjeldahl <br> Nitrogen <br> (mg/l) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| May 7 | 9.2 | $\begin{gathered} 44 \\ 58-D \end{gathered}$ | 2.0 | 107 | 36 | <5 | 66.3 | <0.2 | <0.16 | 1.1 |
| May 29 | 11.1 | $\begin{gathered} 63 \\ 50-\mathrm{D} \end{gathered}$ | 1.4 | <2 | 38 | 9 | 75.4 | <0.2 | 0.71 | 1.5 |
| June 11 | 10.3 | $\begin{gathered} 49 \\ 57-\mathrm{D} \end{gathered}$ | 1.9 | <2 | 36 | <20 | 73.4 | <0.2 | 0.80 | 1.3 |
| June 25 | 8.0 | $\begin{gathered} 49 \\ 44-D \end{gathered}$ | 6.2 | 4 | 38 | 6 | 68.3 | <0.2 | <0.16 | 3.4 |
| July 9 | 8.2 | $\begin{gathered} 31 \\ 68-D \end{gathered}$ | 6.8 | <2 | 38 | <5 | 70.7 | <0.2 | <0.16 | 0.9 |
| July 25 | 3.2 | $\begin{gathered} 46 \\ 62-D \end{gathered}$ | 24.8 | 2 | 38 | <5 | 59.5 | <0.2 | <0.16 | 1.3 |
| Aug 14 | 5.0 | $\begin{gathered} 36 \\ 230-D \end{gathered}$ | 7.9 | 5 | 40 | <20 | 60.3 | <0.2 | 0.23 | 1.1 |
| Aug 27 | 7.3 | $\begin{gathered} 45 \\ 129-\mathrm{D} \end{gathered}$ | 5.4 | 2 | 44 | <5 | 59.8 | <0.2 | 0.51 | 1.0 |
| Sep 19 | 8.7 | $\begin{gathered} 35 \\ 37-D \end{gathered}$ | 3.6 | 5 | 44 | <5 | 64.2 | <0.2 | <0.16 | 0.7 |
| Sep 27 | 10.2 | $\begin{gathered} 31 \\ 43-D \end{gathered}$ | 2.4 | <2 | 44 | <5 | 65.3 | <0.2 | <0.16 | 1.1 |
| Oct 11 | 10.5 | $\begin{gathered} 29 \\ 38-D \end{gathered}$ | 2.8 | <2 | 44 | 7 | 61.6 | <0.2 | <0.16 | 0.8 |
| Oct 28 | 13.3 | $\begin{array}{r} 27 \\ 28-D \\ \hline \end{array}$ | 5.2 | 2.0 | 46 | <5 | 78.8 | <0.2 | <0.16 | 1.2 |
| May-September Average |  |  |  |  |  |  |  |  |  |  |
|  | 8.1 | $\begin{gathered} 43 \\ 78-D \end{gathered}$ | 6 | 13 | 40 | 9 | 66 | 0.2 | 0.3 | 1.3 |
| Jun-September Average |  |  |  |  |  |  |  |  |  |  |
|  | 7.6 | $\begin{gathered} 40 \\ 84-D \end{gathered}$ | 7 | 3 | 40 | 9 | 65 | 0.2 | 0.3 | 1.4 |

Water Quality in Two Stormwater Ponds Tributary to Round Lake: Phosphorus concentrations are moderate to high in both ponds (Table S-4). However chlorophyl concentrations are low in Park Pond but proportional to phosphorus concentrations in RLP Pond. Chloride concentrations are higher in Park Pond compared to RLP Pond due primarily to the high value on May 7, 2013. Pond locations are shown in Figure S-2.

Table S-4. Eden Prairie water quality data for three ponds in 2013. Results for Secchi disc (SD) are in feet, total phosphorus (TP), and chlorophyll a (ChI) are in ppb and chlorides are in $\mathrm{mg} / \mathrm{I}$.

|  | Round Pond NE (0.8-13-A)(Park Pond) |  |  | Round Pond NW (08-23-A)(RLP Pond) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { TP } \\ (\mathrm{ppb}) \end{gathered}$ | $\begin{gathered} \mathrm{Chl} \\ (\mathrm{ppb}) \end{gathered}$ | Chloride (mg/l) | $\begin{gathered} \text { TP } \\ (\mathrm{ppb}) \end{gathered}$ | $\begin{gathered} \mathrm{Chl} \\ (\mathrm{ppb}) \end{gathered}$ | Chloride (mg/l) |
| May 7 | 76 | 16.5 | 609 | 51 | 16.5 | 100 |
| May 29 | 69 | <1 | 59.8 | 105 | 21.4 | 63.3 |
| June 11 | 145 | 1.4 | 45.0 | 191 | 42.7 | 66.4 |
| June 25 | 171 | 10.3 | 38.0 | 233 | 4.5 | 7.9 |
| July 9 | 200 | 35.4 | 34.7 | 457 | 2.4 | 18.2 |
| July 25 | 221 | 31.0 | 10.4 | 122 | 21.7 | 18.6 |
| Aug 14 | 226 | 13.0 | 11.1 | 135 | 19.2 | 17.7 |
| Aug 27 | 229 | 4.3 | 24.0 | 38 | 30.6 | 18.8 |
| Sept 19 | 184 | 3.8 | 7.9 | 237 | 66.4 | 15.5 |
| Sept 27 | 97 | 3.1 | 21.2 | 134 | 41.6 | 18.6 |
| Oct 11 | 66 | 4.3 | 8.2 | 123 | 22.4 | 15.9 |
| Oct 28 | 52 | 7.9 | 6.8 | 79 | 20.4 | 14.6 |
| May-September Average |  |  |  |  |  |  |
|  | 162 | 12 | 86 | 170 | 27 | 35 |
| Jun-September Average |  |  |  |  |  |  |
|  | 184 | 13 | 24 | 193 | 29 | 23 |



Figure S-2. Location of the Round Lake ponds sampled in 2013. Round Pond NE = Park Pond and Round Pond NW = RLP Pond.

# Aquatic Plant Surveys and Water Quality for Round Lake and Two Tributary Ponds, Eden Prairie, 2013 

Lake ID: 27-0071
Size: 31 acres (at normal water elevations, source: MnDNR)
Littoral area: 23 acres (source: MnDNR)
Maximum depth: $\mathbf{3 7} \mathrm{ft}$ (source: MnDNR lake map)
Mean depth: 11 feet
Eurasian watermilfoil first observed: 1995

## Introduction

Round Lake is 31 acres at normal lake levels and is a moderately fertile lake in Eden Prairie, Minnesota.

The aquatic plant point-intercept surveys of Round Lake were conducted to evaluate curlyleaf pondweed, to look for Eurasian watermilfoil, and to document the extent of native plant coverage. Steve McComas, Blue Water Science, conducted two aquatic plant surveys on Round Lake on June 11 and August 19, 2013. Also, Round Lake water quality and stormwater pond water quality are included after the plant survey results.


Figure 1. Sample site map for plant surveys on June 11 and August 19, 2013.

## Methods

We used a point-intercept survey method that consisted of 49 sample locations set on a grid pattern over the lake (Figure 1). Sample sites were spaced about 50 meters apart.

Aquatic plant density was estimated based on a scale from 1-5 with 1 being the least dense and 5 representing plants matting at the surface. Plant density ratings were based on the amount of plants, of a single species, collected on a rake head. A single stem or a trace of an identifiable plant was rated at a density of " 1 ". If plants were collected up to at least one half of the rake head ( 7 out of 14 tines) it was rated at a density of " 2 ". If plants covered all of the rake tines, the density was a " 3 ". If plants covered all 14 tines and were dense on all tines (even obscuring them) the density was a " 4 ". A density of " 5 " was only assigned to plants matting at the surface.

One to two rake samples were collected at each point (Figure 2). A density for each plant species was determined for each rake sample and the species density was averaged based on the number of rake samples for a depth interval.


Figure 2. Aquatic plants were sampled with a rake in Round Lake. Here coontail and stringy pondweed were sampled on August 19, 2013.

## Results of the Early Summer Survey -- June 11, 2013

The most abundant plant in early summer in Round Lake was coontail and it was found at $49 \%$ of the stations (Table 1). Coontail was found growing out to water depths of 12 feet. Eurasian watermilfoil was found at $10 \%$ of the stations and curlyleaf pondweed was found at $8 \%$ of the stations in Round Lake.

An aquatic plant coverage map is shown in Figure 3. Plants covered about 21 acres.
A summary of plant density and occurrence for individual sample sites is shown in Table 2.


Figure 3. (Top) Native aquatic plant growth on June 11, 2013. Green squares = light growth, yellow squares = moderate growth, and red squares = heavy growth.
(Bottom) Curlyleaf pondweed growth on June 11, 2013. Green circles = light growth.

Table 1. Round Lake aquatic plant occurrences and densities for the June 11, 2013 survey based on 49 sample sites. Density ratings are $1-5$ with 1 being low and 5 being most dense.

|  |  | All Stations <br> (n=49) |  |
| :--- | :---: | :---: | :---: |
| White waterlily <br> (Nymphaea tuberosa) | Occurrence | \% Occurrence | Density |
| Coontail <br> (Ceratophyllum demersum) <br> Eurasian watermilfoil <br> (Myriophyllum spicaturm) <br> Curlyleaf pondweed <br> (Potamogeton crispus) <br> Stringy pondweed <br> (P. sp) <br> Filamentous algae$\quad 24$ | 33 | 1.2 |  |



Figure 4. White waterlilies were common in Round Lake in 2013.

Table 2. Individual site data for Round Lake on June 11, 2013.

| Site | Depth (ft) | White Iilies | Coontail | Curlyleaf pondweed | Eurasian watermilfoil | Stringy pondweed | Filamentous algae |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 |  |  |  |  | 1 |  |
| 2 | 6 | 1 | 3 |  |  |  |  |
| 3 | 6 |  | 2 | 1 | 1 |  |  |
| 4 | 2 |  |  |  |  |  |  |
| 5 | 4 |  |  |  |  |  |  |
| 6 | 5 | 2 |  |  |  |  |  |
| 7 | 8 |  | 3 |  |  |  |  |
| 8 | 10 |  |  |  |  |  |  |
| 9 | 12 |  | 2 |  |  |  |  |
| 10 | 3 |  | 1 |  |  |  |  |
| 11 | 4 | 1 |  |  |  |  | 1 |
| 12 | 5 | 1 | 1 |  |  |  |  |
| 13 | 7 | 1 | 2 |  |  |  |  |
| 14 | 8 |  | 2 |  |  |  |  |
| 15 | 27 |  |  |  |  |  |  |
| 16 | 24 |  |  |  |  |  |  |
| 17 | 8 |  | 2 |  | 2 |  |  |
| 18 | 2 |  |  |  |  |  |  |
| 19 | 4 |  |  |  |  |  |  |
| 20 | 6 | 1 | 1 |  |  |  | 1 |
| 21 | 11 |  | 1 |  |  |  |  |
| 22 | 23 |  |  |  |  |  |  |
| 23 | 32 |  |  |  |  |  |  |
| 24 | 32 |  |  |  |  |  |  |
| 25 | 30 |  |  |  |  |  |  |
| 26 | 5 |  | 1 | 1 | 1 |  |  |
| 27 | land |  |  |  |  |  |  |
| 28 | 4 | 1 |  |  |  |  | 1 |
| 29 | 5 | 1 | 2 |  |  |  | 1 |
| 30 | 8 |  | 3 |  |  |  |  |
| 31 | 28 |  |  |  |  |  |  |
| 32 | 32 |  |  |  |  |  |  |
| 33 | 35 |  |  |  |  |  |  |
| 34 | 9 |  | 2 |  |  |  |  |
| 35 | 4 |  | 2 |  |  |  |  |
| 36 | 4 | 1 | 1 |  |  |  | 1 |
| 37 | 5 | 1 | 1 |  |  |  | 1 |
| 38 | 7 |  | 4 | 1 | 2 |  |  |
| 39 | 10 | 1 |  |  |  |  |  |
| 40 | 11 |  | 1 |  |  |  |  |
| 41 | 12 |  |  |  |  |  |  |
| 42 | 11 |  | 1 |  |  |  |  |
| 43 | 5 |  | 2 | 1 | 1 |  |  |
| 44 | 3 |  |  |  |  |  |  |
| 45 | 4 | 1 |  |  |  |  | 1 |
| 46 | 4 | 1 | 1 |  |  |  | 1 |
| 47 | 5 | 2 |  |  |  |  | 2 |
| 48 | 5 | 2 | 1 |  |  |  | 1 |
| 49 | 4 | 1 |  |  |  |  | 1 |
| Average |  | 1.2 | 1.8 | 1.0 | 1.4 | 1.0 | 1.1 |
| occurrence (49 sites) |  | 16 | 24 | 4 | 5 | 1 | 11 |
| \% occurrence |  | 33 | 49 | 8 | 10 | 2 | 22 |

## Results of the Late Summer Survey -- August 19, 2013

The aquatic plant community changed slightly from the May to August surveys. Coontail was found in $59 \%$ of the stations (Table 3). Curlyleaf pondweed was not found in the August survey. Eurasian watermilfoil was found at $8 \%$ of the sample sites.

A map of native aquatic plant coverage is shown in Figure 5. Aquatic plants covered about 21 acres and grew out to about 9 feet of water depth.

The occurrence and density of plants for individual sample sites are shown in Table 4.


Figure 5. Native aquatic plant growth map for Round Lake on August 19, 2013.
Key: Green squares = light growth, yellow squares = moderate growth, and red squares = heavy growth.

Table 3. Round Lake aquatic plant occurrences and densities for the August 19, 2013 survey based on 49 sample sites. Density ratings are $1-5$ with 1 being low and 5 being most dense.

|  | All Stations <br> (n=49) |  |  |
| :--- | :---: | :---: | :---: |
| White waterlily <br> (Nymphaea tuberosa) | 23 | 47 | 2.6 |
| Coontail <br> (Ceratophyllum demersum) | 32 | 65 | 2.8 |
| Eurasian watermilfoil <br> (Myriophyllum spicaturm) | 5 | 10 | 1.2 |
| Brittle naiad <br> (Najas minor) | 2 | 4 | 1.5 |
| Stringy pondweed <br> (Potamogeton sp) | 2 | 4 | 1.0 |



Figure 6. Coontail sampled in Round Lake on August 19, 2013.

Table 4. Individual site data for Round Lake on August 19, 2013.

| site | depth <br> (ft) | White lilies | Brittle naiad | Coontail | Eurasian watermilfoil | Stringy pondweed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 1 |  | 3 |  |  |
| 2 | 4 | 4 |  | 2 |  |  |
| 3 | 4 |  |  | 2 | 1 |  |
| 4 | 2 | 1 | 1 | 1 |  | 1 |
| 5 | 4 | 2 |  | 3 |  |  |
| 6 | 6 |  |  | 5 |  |  |
| 7 | 7 |  |  | 3 |  |  |
| 8 | 8 |  |  | 3 |  |  |
| 9 | 9 | 1 |  | 1 |  |  |
| 10 | 4 |  |  | 3 | 1 |  |
| 11 | 4 | 1 |  | 4 |  |  |
| 12 | 6 | 3 |  | 3 |  |  |
| 13 | 6 | 3 |  | 2 |  |  |
| 14 | 10 |  |  | 2 |  |  |
| 15 | 27 |  |  |  |  |  |
| 16 | 24 |  |  |  |  |  |
| 17 | 8 | 1 |  | 2 |  |  |
| 18 | 2 |  |  | 2 |  |  |
| 19 | 4 | 4 |  | 3 |  |  |
| 20 | 8 |  |  | 1 |  |  |
| 21 | 12 |  |  |  |  |  |
| 22 | 23 |  |  |  |  |  |
| 23 | 32 |  |  |  |  |  |
| 24 | 32 |  |  |  |  |  |
| 25 | 30 |  |  |  |  |  |
| 26 | 5 |  | 2 |  | 2 | 1 |
| 27 | land |  |  |  |  |  |
| 28 | 4 | 2 |  | 4 |  |  |
| 29 | 7 | 3 |  | 3 |  |  |
| 30 | 12 |  |  |  |  |  |
| 31 | 28 |  |  |  |  |  |
| 32 | 32 |  |  |  |  |  |
| 33 | 35 |  |  |  |  |  |
| 34 | 12 |  |  |  |  |  |
| 35 | 6 | 1 |  | 3 | 1 |  |
| 36 | 4 | 3 |  | 4 |  |  |
| 37 | 6 | 4 |  | 3 |  |  |
| 38 | 6 | 4 |  | 4 |  |  |
| 39 | 8 |  |  | 4 |  |  |
| 40 | 12 |  |  |  |  |  |
| 41 | 12 |  |  |  |  |  |
| 42 | 12 |  |  |  |  |  |
| 43 | 5 | 2 |  | 3 |  |  |
| 44 | 3 | 2 |  | 2 |  |  |
| 45 | 4 | 4 |  | 3 |  |  |
| 46 | 4 | 4 |  | 3 |  |  |
| 47 | 6 | 3 |  | 3 |  |  |
| 48 | 5 | 3 |  | 3 | 1 |  |
| 49 | 4 | 4 |  | 2 |  |  |
| Average |  | 2.6 | 1.5 | 2.8 | 1.2 | 1.0 |
| occurrence (49 sites) |  | 23 | 2 | 32 | 5 | 2 |
| \% occurrence |  | 47 | 4 | 65 | 10 | 4 |

## Comparison of Early and Late Summer Aquatic Plant Surveys in 2013

Two aquatic plant point-intercept surveys were conducted on Round Lake (31 acres at normal water levels) in the summer of 2013. The objective of the June 11 survey was to evaluate curlyleaf pondweed and native plants and the objective of the August 19 survey was to look for Eurasian watermilfoil and characterize native plants.

In the early summer of 2013, Eurasian watermilfoil was found at $10 \%$ of the samples ( 5 sample sites) and out to about 8 feet of water depth. Nuisance conditions, where plants were matting at the water surface, were not found in Round Lake. Curlyleaf pondweed was observed in $8 \%$ of the samples (4 sample sites) in June 2013.

In August, Eurasian watermilfoil was found at $10 \%$ of the samples ( 5 sample sites) and at low densities (Table 5). Plants grew out to about 10 feet of water in late summer.

Submerged plants covered about 21 acres of the lake bottom in June and about 21 acres in August. Both waterlilies and coontail increased in distribution and abundance from June to August (Figure 7). This is fairly common for lakes in this region.

Table 5. The percent occurrence of aquatic plants for Round Lake in 2013. Percent occurrence is calculated based on the number of times a plant species occurs at a sampling station divided into the total number of stations for the survey. For example, if milfoil was found in 5 out of 10 stations, its percent occurrence would be $50 \%$.

|  | June 11, 2013 <br> \% Occurrence <br> (49 stations) | August 19, 2013 <br> \% Occurrence <br> (49 stations) | Changes from <br> June to August <br> (+/-) |
| :--- | :---: | :---: | :---: |
| White waterlily <br> (Nymphaea tuberosa) | 33 | 47 | + |
| Coontail <br> (Ceratophyllum demersum) <br> Eurasian watermilfoil <br> (Myriophyllum spicaturm) | 49 | 65 | + |
| Brittle naiad <br> (Najas minor) | 10 | 10 | 0 |
| Curlyleaf pondweed <br> (Potamogeton crispus) | 0 | 4 | + |
| Stringy pondweed <br> (P. sp) | 8 | 0 | - |
| Filamentous algae | 2 | 4 | + |
| Number of submerged species <br> Aquatic Plant Coverage (acres) | 22 | 0 | - |
| Secchi disc (ft) | 20 | 4 | 0 |



Figure 7. [top-left] White waterlilies distribution and abundance - June 2013
[top-right] White waterlilies distribution and abundance - August 2013.
[bottom-left] Coontail distribution and abundance - June 2013.
[bottom-right] Coontail distribution and abundance - August 2013.
Key: Green squares = light growth, yellow squares = moderate growth, and red squares $=$ heavy growth.

## Summary of Aquatic Plant Surveys for 2006-2013

Early Summer Surveys: The aquatic plant community has been somewhat stable in the early summer from 2006 to 2013 with coontail being the dominant plant (Table 6). Overall, aquatic plant species diversity is low.

Both curlyleaf pondweed and Eurasian watermilfoil were present in 2013 but were producing mostly light growth conditions.

Eurasian watermilfoil and coontail distribution have decreased since 2010.

Table 6. Summary of aquatic plant surveys from 2006-2013 conducted by Blue Water Science. The top number is the percent occurrence (\%) and the bottom number is the density.

|  | Early Summer |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 2006 \\ \text { May } \\ 30 \\ (\mathrm{n}=20) \end{gathered}$ | $\begin{gathered} 2007 \\ \text { May } \\ 14 \\ (\mathrm{n}=20) \end{gathered}$ | $\begin{gathered} 2008 \\ \text { May } \\ 28 \\ (\mathrm{n}=20) \end{gathered}$ | $\begin{gathered} 2009 \\ \text { June } \\ 9 \\ (\mathrm{n}=20) \end{gathered}$ | $\begin{gathered} 2010 \\ \text { May } \\ 25 \\ (\mathrm{n}=20) \end{gathered}$ | $\begin{gathered} 2011 \\ \text { June } \\ 9 \\ (\mathrm{n}=49) \end{gathered}$ | $\begin{gathered} 2012 \\ \text { May } \\ 17 \\ (\mathrm{n}=49) \end{gathered}$ | $\begin{gathered} 2013 \\ \text { June } \\ 11 \\ (\mathrm{n}=49) \end{gathered}$ |
| Duckweed | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Spatterdock | 0 | 0 | 0 | 0 | 0 | 0 | $\begin{gathered} 2 \\ (1.0) \end{gathered}$ | 0 |
| White waterlily | $\begin{gathered} 65 \\ (1.1) \\ \hline \end{gathered}$ | $\begin{gathered} 45 \\ (1.2) \\ \hline \end{gathered}$ | $\begin{gathered} 40 \\ (1.3) \\ \hline \end{gathered}$ | $\begin{gathered} 40 \\ (2.1) \end{gathered}$ | $\begin{gathered} 25 \\ (1.6) \\ \hline \end{gathered}$ | $\begin{gathered} 35 \\ (1.4) \\ \hline \end{gathered}$ | $\begin{gathered} 31 \\ (1.0) \\ \hline \end{gathered}$ | $\begin{gathered} 33 \\ (1.2) \\ \hline \end{gathered}$ |
| Coontail | $\begin{aligned} & \hline 100 \\ & (2.5) \end{aligned}$ | $\begin{aligned} & \hline 100 \\ & (2.6) \end{aligned}$ | $\begin{aligned} & \hline 100 \\ & (2.6) \end{aligned}$ | $\begin{gathered} \hline 65 \\ (3.1) \end{gathered}$ | $\begin{gathered} 90 \\ (2.6) \end{gathered}$ | $\begin{gathered} \hline 49 \\ (2.5) \end{gathered}$ | $\begin{gathered} \hline 33 \\ (2.5) \end{gathered}$ | $\begin{gathered} \hline 49 \\ (1.8) \end{gathered}$ |
| Chara | 0 | 0 | 0 | 0 | 0 | $\begin{gathered} 4 \\ (1.5) \end{gathered}$ | 0 | 0 |
| Elodea | $\begin{gathered} 5 \\ (0.1) \end{gathered}$ | 0 | 0 | 0 | 0 | $\begin{gathered} 10 \\ (1.0) \end{gathered}$ | $\begin{gathered} 10 \\ (1.0) \end{gathered}$ | 0 |
| Eurasian watermilfoil | $\begin{gathered} 85 \\ (1.0) \end{gathered}$ | $\begin{gathered} 70 \\ (1.5) \end{gathered}$ | $\begin{gathered} 95 \\ (2.2) \end{gathered}$ | $\begin{gathered} 100 \\ (3.6) \end{gathered}$ | $\begin{gathered} 100 \\ (3.6) \end{gathered}$ | $\begin{gathered} 29 \\ (1.3) \end{gathered}$ | $\begin{gathered} 29 \\ (1.3) \end{gathered}$ | $\begin{gathered} 10 \\ (1.4) \end{gathered}$ |
| Naiads | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Brittle naiad | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Curlyleaf pondweed | $\begin{gathered} 5 \\ (0.6) \end{gathered}$ | $\begin{gathered} 15 \\ (1.3) \end{gathered}$ | $\begin{gathered} 10 \\ (0.8) \end{gathered}$ | 0 | 0 | $\begin{gathered} 6 \\ (1.3) \end{gathered}$ | $\begin{gathered} 14 \\ (1.0) \end{gathered}$ | $\begin{gathered} 8 \\ (1.0) \end{gathered}$ |
| Floatingleaf pondweed | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Stringy pondweed | $\begin{gathered} 10 \\ (0.8) \end{gathered}$ | 0 | 0 | 0 | 0 | $\begin{gathered} 14 \\ (1.7) \end{gathered}$ | $\begin{gathered} 6 \\ (1.0) \end{gathered}$ | $\begin{gathered} 2 \\ (1.0) \end{gathered}$ |
| Flatstem pondweed | 0 | 0 | 0 | 0 | 0 | 0 | $\begin{gathered} 2 \\ (1.0) \end{gathered}$ | 0 |
| Buttercup | 0 | 0 | 0 | 0 | 0 | 0 | $\begin{gathered} 1 \\ (2.0) \\ \hline \end{gathered}$ | 0 |
| Filamentous algae | $\begin{gathered} 85 \\ (1.9) \\ \hline \end{gathered}$ | $\begin{gathered} 55 \\ (2.8) \\ \hline \end{gathered}$ | $\begin{gathered} 85 \\ (2.1) \\ \hline \end{gathered}$ | $\begin{gathered} 30 \\ (3.3) \\ \hline \end{gathered}$ | $\begin{gathered} 55 \\ (1.4) \\ \hline \end{gathered}$ | $\begin{gathered} 10 \\ (3.2) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 33 \\ (2.3) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 22 \\ (1.1) \\ \hline \end{gathered}$ |
| Number of submerged plant species | 5 | 3 | 3 | 2 | 2 | 6 | 7 | 4 |

Late Summer Surveys: For all eight late summer plant surveys, coontail has been the dominant plant (Table 6). Other native plant species have been found lower frequencies. Eurasian watermilfoil is present and growth increased for a few years, but has declined since 2010 (Table 6). Coontail has also declined since 2010, but not to the same degree.

Table 6. Summary of aquatic plant surveys from 2006-2013 conducted by Blue Water Science. The top number is the percent occurrence (\%) and the bottom number is the density.

|  | Late Summer |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 2006 \\ \text { July } \\ 26 \\ (\mathrm{n}=22) \end{gathered}$ | $\begin{gathered} 2007 \\ \text { Aug } \\ 16 \\ (\mathrm{n}=20) \\ \hline \end{gathered}$ | $\begin{gathered} 2008 \\ \text { Aug } \\ 25 \\ (\mathrm{n}=20) \\ \hline \end{gathered}$ | $\begin{gathered} 2009 \\ \text { Aug } \\ 31 \\ (\mathrm{n}=20) \end{gathered}$ | $\begin{gathered} 2010 \\ \text { July } \\ 9 \\ (\mathrm{n}=20) \\ \hline \end{gathered}$ | $\begin{gathered} 2011 \\ \text { Sept } \\ 12 \\ (n=34) \\ \hline \end{gathered}$ | $\begin{gathered} 2012 \\ \text { Aug } \\ 1 \\ (\mathrm{n}=49) \\ \hline \end{gathered}$ | $\begin{gathered} 2013 \\ \text { Aug } \\ 19 \\ (\mathrm{n}=49) \end{gathered}$ |
| Duckweed | 0 | 0 | 0 | $\begin{gathered} 5 \\ (1.0) \end{gathered}$ | 0 | 0 | 0 | 0 |
| Spatterdock | $\begin{gathered} 5 \\ (0.3) \end{gathered}$ | 0 | 0 | 0 | 0 | 0 | $\begin{gathered} 2 \\ (2.0) \end{gathered}$ | 0 |
| White waterlily | $\begin{array}{r} 60 \\ (2.7) \\ \hline \end{array}$ | $\begin{gathered} 55 \\ (2.1) \end{gathered}$ | $\begin{gathered} 45 \\ (3.7) \end{gathered}$ | $\begin{gathered} 50 \\ (2.6) \\ \hline \end{gathered}$ | $\begin{gathered} 45 \\ (3.5) \\ \hline \end{gathered}$ | $\begin{gathered} 56 \\ (2.9) \\ \hline \end{gathered}$ | $\begin{gathered} 51 \\ (3.2) \end{gathered}$ | $\begin{gathered} 47 \\ (2.6) \end{gathered}$ |
| Coontail | $\begin{aligned} & \hline 100 \\ & (3.4) \end{aligned}$ | $\begin{aligned} & \hline 100 \\ & (2.6) \end{aligned}$ | $\begin{aligned} & \hline 100 \\ & (3.1) \end{aligned}$ | $\begin{aligned} & \hline 100 \\ & (2.4) \end{aligned}$ | $\begin{gathered} 90 \\ (3.5) \end{gathered}$ | $\begin{gathered} \hline 82 \\ (2.3) \end{gathered}$ | $\begin{gathered} 59 \\ (3.7) \end{gathered}$ | $\begin{gathered} \hline 65 \\ (2.8) \end{gathered}$ |
| Chara | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Elodea | 0 | $\begin{gathered} 5 \\ (0.5) \end{gathered}$ | 0 | 0 | 0 | $\begin{gathered} 3 \\ (0.5) \end{gathered}$ | $\begin{gathered} 4 \\ (1.0 \end{gathered}$ | 0 |
| Eurasian watermilfoil | $\begin{gathered} 45 \\ (0.8) \end{gathered}$ | $\begin{gathered} 85 \\ (0.9) \end{gathered}$ | $\begin{aligned} & 100 \\ & (2.7) \end{aligned}$ | $\begin{gathered} 100 \\ (2.1) \end{gathered}$ | $\begin{gathered} 90 \\ (2.3) \end{gathered}$ | $\begin{gathered} 15 \\ (1.3) \end{gathered}$ | $\begin{gathered} 8 \\ (1.0) \end{gathered}$ | $\begin{gathered} 10 \\ (1.2) \end{gathered}$ |
| Naiads | $\begin{gathered} 5 \\ (0.5) \end{gathered}$ | 0 | 0 | 0 | 0 | $\begin{gathered} 3 \\ (1.0) \end{gathered}$ | 0 | 0 |
| Brittle naiad | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\begin{gathered} 4 \\ (1.5) \end{gathered}$ |
| Curlyleaf pondweed | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Floatingleaf pondweed | 0 | 0 | 0 | 0 | 0 | $\begin{gathered} 3 \\ (1.0) \end{gathered}$ | $\begin{gathered} 2 \\ (1.0) \end{gathered}$ | 0 |
| Stringy pondweed | 0 | $\begin{gathered} 5 \\ (1.0) \end{gathered}$ | 0 | $\begin{gathered} 5 \\ (1.0) \end{gathered}$ | 0 | $\begin{gathered} 6 \\ (0.8) \end{gathered}$ | $\begin{gathered} 2 \\ (1.0) \end{gathered}$ | $\begin{gathered} 4 \\ (1.0) \end{gathered}$ |
| Flatstem pondweed | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Buttercup | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Filamentous algae | $\begin{gathered} \hline 25 \\ (2.6) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 15 \\ (2.7) \\ \hline \end{gathered}$ | $\begin{gathered} 30 \\ (1.3) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 15 \\ (1.7) \\ \hline \end{gathered}$ | $\begin{gathered} 55 \\ (2.6) \\ \hline \end{gathered}$ | $\begin{gathered} 59 \\ (3.1) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 27 \\ (2.3) \\ \hline \end{gathered}$ | 0 |
| Number of submerged plant species | 3 | 4 | 2 | 3 | 2 | 6 | 5 | 4 |

## EWM in Round Lake, Eden Prairie, from 2008 Through 2013

Early Season


## Late Season



Point-transect surveys using 20 points/survey were conducted from May 2006-July 2010. Maps for 2006 and 2007 are not shown. Light growth was observed at all sites in 2006 and 2007. Occurrence included: May 2006: 17/20 sites; July 2006: 9/20 sites; May 2007: 14/20 sites; and August 2007: 17/20 sites.

EWM abundance was increasing starting in May 2008 and peaked in August 2009 with carry over to May 2010. EWM started to decline in July 2010 and has had mostly light growth since 2011.

Point-intercept surveys using 49 points were started in June 2011 and have continued to the present.

From June 2011 through August 2013, EWM growth has been mostly light.

## Summary and Recommendations for Aquatic Plant Management in Round Lake

In 2013, the aquatic plant community had four species of submerged plants in early and late summer. This is a relatively low plant diversity condition.

Eurasian watermilfoil was first observed in Round Lake in 1995 and was found growing at low densities in 2013. On June 9, 2010, brittle naiad, another non-native aquatic plant, was found in Round Lake. Brittle naiad was found just north of the public access. In 2013 brittle naiad was again observed at this same location at two sample sites.

Curlyleaf pondweed has been found in Round Lake in the past and does not require control at this time. Eurasian watermilfoil was present but with light growth in 2013, and presented no recreational problems.

Because aquatic plants are important for sustaining good water quality, plant surveys should be conducted again in 2014. If milfoil growth is heavy and interferes with recreational lake use, mechanical harvesting is recommended as a control method.


Figure 8. Swimming beach at Round Lake in August, 2013.

Curlyleaf Pondweed Growth Potential Based on Lake Sediments: Research has found curlyleaf is limited or enhanced based on lake sediment characteristics. Curlyleaf does best in sediments with a high pH and low iron content (McComas, unpublished). Based on lake sediment characteristics, curlyleaf could produce light, moderate, or heavy growth on an annual basis.

In Round Lake it is predicted that curlyleaf will grow at mostly light densities with a couple of areas producing heavy growth on a year to year basis (Table 7 and Figure 9). If treatment is considered in the future, the latest research indicates that harvesting or herbicides produce annual control but long-term control is unlikely.

Table 7. Round Lake sediment data and rating for potential heavy curlyleaf pondweed growth.

| Site | Depth (ft) | $\begin{gathered} \mathrm{pH} \\ (\mathrm{su}) \end{gathered}$ | Organic Matter (\%) | Fe:Mn Ratio | Potential for CLP Growth |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | <7.4 | 0.1-5 | >4.5 | Light (green) |
|  |  | 7.4-7.7 | 6-19 | 4.5-1.6 | Moderate (yellow) |
|  |  | >7.7 | >20 | <1.6 | Heavy (red) |
| 2005 |  |  |  |  |  |
| 1 | 5 | 7.3 | 38.6 | 5.1 | Light |
| 2 | 6 | 7.8 | 37.6 | 3.3 | Heavy |
| 3 | 6 | 6.4 | 1.7 | 9.2 | Light |
| 4 | 5 | 6.9 | 7.8 | 6.6 | Light |
| 5 | 6 | 7.8 | 29.1 | 2.7 | Heavy |
| 2011 |  |  |  |  |  |
| 6 | 7 | 6.8 | 11.1 | 15.9 | Light |
| 7 | 8 | 6.7 | 7.9 | 12.7 | Light |
| 8 | 7 | 6.4 | 8.7 | 7.9 | Light |
| 9 | 7 | 6.3 | 14.0 | 11.8 | Light |
| 10 | 9 | 7.5 | 33.5 | 3.5 | Moderate |
| 11 | 31 | 5.9 | 17.7 | 11.7 | Light |
| 12 | 32 | 7.3 | 36.2 | 4.6 | Light |
| 13 | 22 | 7.6 | 28.5 | 4.4 | Moderate |



Figure 9. Curlyleaf pondweed potential based on sediment testing. Green shading = light growth; yellow shading = moderate growth, and red shading = heavy growth.


Light growth (left) refers to non-nuisance growth that is mostly below the surface and is not a recreational or ecological problem. Moderate growth (middle) refers to growth that is just below the water surface. Heavy growth (right) refers to nuisance matting curlyleaf pondweed. This is the kind of nuisance growth predicted by high sediment $\mathbf{p H}$ and a sediment bulk density less than 0.51 .

Eurasian Watermilfoil Growth Potential Based on Lake Sediments: Lake sediment sampling results from 2005 and 2011 have been used to predict lake bottom areas that have the potential to support heavy EWM growth. Eurasian watermilfoil was first observed in Round Lake in 1995 (source: MnDNR). The potential for milfoil growth, based on lake sediment sampling, ranges from light to heavy growth (Table 8 and Figure 10). In other lakes heavy milfoil growth has been correlated with high sediment nitrogen conditions with sediment ammonia nitrogen over 10 ppm . In the growing zone, 4 out of the 10 samples had high nitrogen. In the other six samples sediment nitrogen was low to moderate.

For Round Lake, it is estimated the plants have the potential to grow down to at least 11 feet of water depth. It is predicted, there should be a mix of milfoil growth types in Round Lake.

Table 8. Round Lake sediment data and ratings for potential EWM growth.

$\left.$| Site | Depth <br> (ft) | $\mathbf{N H}_{4}$ Conc <br> (ppm) | Organic <br> Matter <br> (\%) |
| :---: | :---: | :---: | :---: | | Potential |
| :---: |
| for EWM |
| Growth | \right\rvert\,



Figure 10. Eurasian watermilfoil growth potential based on sediment testing. Green shading = light growth; yellow shading = moderate growth, and red shading = heavy growth.


Light growth (left) refers to non-nuisance growth that is mostly below the surface and is not a recreational or ecological problem. Heavy growth (right) refers to nuisance matting Eurasian watermilfoil. This is the kind of nuisance growth predicted by high sediment nitrogen values and a sediment organic matter content less than $\mathbf{2 0 \%}$.

## Round Lake Water Quality Summary

Summer water chemistry data collected since 1972 includes Secchi disc, total phosphorus (TP), and chlorophyll $\underline{a}(\mathrm{Chl} \underline{\mathrm{a}}$ )(Table 9). Overall, the three water quality indicators (Secchi disc, total phosphorus, and chlorophyll a) over the years indicate Round Lake has had fluctuating water quality.

Table 9. Round Lake summer averages (source: Barr Engineering Company except for 2005 which is Blue Water Science). Summer averages for 1972-1997 are from June-August (Barr 1999, p. 1-7). For 2001-2003, summer averages are from June-August and the June-September average is also shown. For 2005, the average is July and August. 2008-2013 data was collected by Blue Water Science.

| Date | SD (m) | SD (ft) | TP ( $\mu \mathrm{g} / \mathrm{l}$ ) | CHL ( $\mu \mathrm{g} / \mathrm{l}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| 1972 | 5.0 | 16.5 | 20 | 5.2 |
| 1975 | 2.4 | 7.9 | 72 | 17.2 |
| 1978 | 2.0 | 6.6 | 43 | 15.1 |
| 1980 | 2.1 | 6.9 | 49 | 11.3 |
| 1981 | 4.6 | 15.2 | 41 | 4.7 |
| 1982 | 4.4 | 14.5 | 28 | 6.6 |
| 1983 | 2.6 | 8.6 | 42 | 13.8 |
| 1984 | 3.0 | 9.9 | 38 | 9.6 |
| 1985 | 2.4 | 7.9 | 41 | 11.4 |
| 1986 | 2.9 | 9.6 | 34 | 13.6 |
| 1987 | 1.8 | 5.9 | 99 | 30.0 |
| 1988 | 1.1 | 3.6 | 88 | 22.4 |
| 1991 | 1.0 | 3.3 | 74 | 35.7 |
| 1993 | 2.3 | 7.6 | 56 | 9.2 |
| 1997 | 1.3 | 4.3 | 60 | 19.0 |
| 2001 (Jun - Aug) | 2.3 | 7.5 | 27 | 4.8 |
| average (Jun - Sept) | 2.1 | 6.9 | 30 | 7.6 |
| range | 1.4-3.0 | 4.6-9.9 | 21-48 | 1.3-1.5 |
| n | 9 | 9 | 9 | 9 |
| 2002 (Jun - Aug) | 1.6 | 5.2 | 34 | 13.1 |
| average (Jun - Sept) | 1.2 | 4.0 | 33 | 13.6 |
| range | 1.1-2.0 | 3.6-6.6 | 28-42 | 0.5-15 |
| n | 5 | 5 | 5 | 5 |
| 2003 (Jun - Aug) | 1.3 | 4.3 | 57 | 39 |
| average (Jun - Sept) | 1.2 | 4.0 | 53 | 37 |
| range | 0.5-2.4 | 1.7-7.9 | 40-64 | 0.5-70 |
| n | 5 | 5 | 5 | 5 |
| 2005 (Jul - Aug) | 1.9 | 6.3 | 34 | 11 |
| range | 1.7-2.0 | 5.6-6.6 | 33-34 | 9.9-11.7 |
| n | 2 | 2 | 2 | 2 |
| 2008 (May - Sept) | 2.3 | 7.2 | 30 | 10.8 |
| range | 1.0-4.3 | 3.4-14.1 | 19-42 | 1.2-21.3 |
| n | 10 | 10 | 10 | 10 |
| 2009 (May - Sept) | 2.1 | 7.0 | 52 | 18 |
| range | 0.9-4.2 | 3.1-13.9 | 42-72 | 1.8-58.9 |
| n | 10 | 10 | 10 | 10 |
| 2010 (May - Sept) | 1.6 | 5.2 | 47 | 29 |
| range | 0.5-4.0 | 1.6-13.1 | 24-1,200 | 2.7-77 |
| n | 16 | 16 | 12 | 12 |
| 2011 (May - Sept) | 2.2 | 7.3 | 42 | 6.5 |
| average (Jun - Sept) | 2.1 | 6.9 | 40 | 7.8 |
| range | 1.4-3.8 | 4.7-12.5 | 23-54 | 1.1-6.0 |
| n | 10 | 10 | 10 | 10 |
| 2012 (May - Sept) | 1.5 | 4.9 | 44 | 19.4 |
| average (Jun - Sept) | 1.5 | 4.8 | 40 | 17.7 |
| range | 1.0-2.2 | 3.3-7.1 | 27-73 | 5.3-42.1 |
| n | 10 | 10 | 10 | 10 |
| 2013 (May - Sept) | 2.5 | 8.1 | 43 | 6 |
| average (Jun - Sept) | 2.3 | 7.6 | 40 | 7 |
| range | 1.0-3.4 | 3.2-11.1 | 31-63 | 1.4-24.8 |
| n | 10 | 10 | 10 | 10 |

Water Quality in Two Stormwater Ponds Tributary to Round Lake: Phosphorus concentrations are moderate to high in both ponds (Table 10). However chlorophyl concentrations are low in Park Pond but proportional to phosphorus concentrations in RLP Pond. Chloride concentrations are higher in Park Pond compared to RLP Pond due primarily to the high value on May 7, 2013. Pond locations are shown in Figure 11.

Table 10. Eden Prairie water quality data for three ponds in 2013. Results for Secchi disc (SD) are in feet, total phosphorus (TP), and chlorophyll a (Chl) are in ppb and chlorides are in mg/l.

|  | Round Pond NE (0.8-13-A)(Park Pond) |  |  | Round Pond NW (08-23-A)(RLP Pond) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { TP } \\ (\mathrm{ppb}) \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{Chl} \\ (\mathrm{ppb}) \end{gathered}$ | Chloride (mg/l) | $\begin{gathered} \text { TP } \\ (\mathrm{ppb}) \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{Chl} \\ (\mathrm{ppb}) \end{gathered}$ | Chloride (mg/l) |
| May 7 | 76 | 16.5 | 609 | 51 | 16.5 | 100 |
| May 29 | 69 | <1 | 59.8 | 105 | 21.4 | 63.3 |
| June 11 | 145 | 1.4 | 45.0 | 191 | 42.7 | 66.4 |
| June 25 | 171 | 10.3 | 38.0 | 233 | 4.5 | 7.9 |
| July 9 | 200 | 35.4 | 34.7 | 457 | 2.4 | 18.2 |
| July 25 | 221 | 31.0 | 10.4 | 122 | 21.7 | 18.6 |
| Aug 14 | 226 | 13.0 | 11.1 | 135 | 19.2 | 17.7 |
| Aug 27 | 229 | 4.3 | 24.0 | 38 | 30.6 | 18.8 |
| Sept 19 | 184 | 3.8 | 7.9 | 237 | 66.4 | 15.5 |
| Sept 27 | 97 | 3.1 | 21.2 | 134 | 41.6 | 18.6 |
| Oct 11 | 66 | 4.3 | 8.2 | 123 | 22.4 | 15.9 |
| Oct 28 | 52 | 7.9 | 6.8 | 79 | 20.4 | 14.6 |
| May-September Average |  |  |  |  |  |  |
|  | 162 | 12 | 86 | 170 | 27 | 35 |
| Jun-September Average |  |  |  |  |  |  |
|  | 184 | 13 | 24 | 193 | 29 | 23 |



Figure 11. Location of the Round Lake ponds sampled in 2013. Round Pond NE = Park Pond and Round Pond NW = RLP Pond.

Round Lake Watershed: Two ponds sampled in 2013 are shown in Figure 12.


Round Lake Watershed (444 acres, including the lake)
Subwatershed Areas:

1. 235 ac
2. 58 ac
3. 26 ac
4. 11 ac
5. 37 ac
Direct: 46 ac

Figure 12. Round Lake subwatershed boundaries are outlined in red. The watershed area was calculated to be 444 acres (includes lake area). The largest subwatershed is subwatershed 1 and is 235 acres in size (source: Barr 1999). Bren Lane Pond and Round Lake Pond (RLP) are located in subwatershed 1 and Park Pond is located in the direct drainage subwatershed.


RLP (Round Lake Pond)(2010) in
Subwatershed 1


Bren Lane Pond (2010) in
Subwatershed 1


Park Pond (2009) (receives storm flows from Subwatershed 3)

## Water Quality for Bren Lane Pond, RLP Pond, Park Pond, and Round Pond C for 2007 Through 2012

Table 11. Eden Prairie water quality data 2007. Results for secchi disc (SD) are in feet, total phosphorus (TP) are in ppb, chlorophyll a (chl) are in ppb.

|  | Bren Lane Pond |  |  | RLP Pond |  |  | Park Pond |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SD | TP | Chl | SD | TP | Chl | SD | TP | Chl |
| May 14 |  | 134 | 28.7 |  | 186 | 27.9 |  |  |  |
| May 25 |  |  |  |  |  |  | 1.0 | 131 | 8.4 |
| June 11 | 2.5 | 244 | 102 | 1.2 | 187 | 55.2 | 2.9 | 154 | 7.3 |
| June 28 |  |  |  |  |  |  |  |  |  |
| July 9 |  |  |  |  |  |  |  |  |  |
| July 27 | 0.5 | 373 | 269 | 1.0 | 859 | 218 | 1.5 | 134 | 23.8 |
| Aug 16 |  | 473 | 179 |  | 386 | 136 |  | 789 | 9.6 |
| Aug 30 |  |  |  |  |  |  |  |  |  |
| Sept 10 |  |  |  |  |  |  |  |  |  |
| Sept 25 | 0.9 | 197 | 149 | 0.9 | 190 | 66 | 0.5 | 251 | 66.8 |
| May - September Average |  |  |  |  |  |  |  |  |  |
|  | 1.7 | 286 | 146 | 1.2 | 362 | 101 | 1.5 | 292 | 23 |

Table 12. Three stormwater ponds water quality data for 2008. Results for total phosphorus (TP) are in ppb and chlorophyll $\underline{a}$ (chl) are in ppb.

|  | Bren Lane Pond |  | RLP Pond |  | Park Pond |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TP | Chl | TP | Chl | TP | Chl |
| May 15 |  |  |  |  |  |  |
| May 28 | 159 |  | 221 |  | 124 |  |
| June 9 | 228 |  | 257 |  | 269 |  |
| June 20 |  |  |  |  |  |  |
| July 10 | 164 | 33 | 104 | <1 | 131 | 3.4 |
| July 28 | 139 |  | dry |  | 115 |  |
| Aug 6 | 134 |  | dry |  | 84 |  |
| Aug 25 |  |  |  |  |  |  |
| Sept 16 | 117 |  | 266 |  | 120 |  |
| Sept 28 |  |  |  |  |  |  |
| May - September Average |  |  |  |  |  |  |
|  | 157 |  | 212 |  | 141 |  |

Table 13. Eden Prairie water quality data for 2009 for two stormwater ponds. Results for secchi disc (SD) are in feet, total phosphorus (TP) are in ppb, and chlorophyll a (chl) are in ppb.


Table 14. Stormwater pond water quality data 2010. Results for secchi disc (SD) are in feet, total phosphorus (TP) are in ppb, chlorophyll a (chl) are in ppb, conductivity (Cond) are in umhos, and pH are in standard units.

| Lakes | Round Lake Pond (RLP) |  |  |  |  | Bren Lane Pond |  |  |  |  | Park Pond |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SD | TP | Chl | Cond | pH | SD | TP | Chl | Cond | pH | SD | TP | Chl | Cond | pH |
| May 6 |  |  |  |  |  |  | 31 | 17.1 |  |  |  | 51 | -- |  |  |
| May 25 |  |  |  |  |  | 2.5b | 208 | 2.8 | 250 | 6.8 | 2.0 | 140 | BDL | 420 | 6.9 |
| June 10 |  |  |  |  |  | 2b | 106 | 24.6 | 470 | 8.5 | -- | -- | -- |  |  |
| June 28 |  |  |  |  |  | 2.8 | 560 | 44.5 | 150 | 7.3 | 2 | 182 | 34.2 | 105 | 7.4 |
| July 9 |  |  |  |  |  | 3.7 | 70 | 19.4 |  |  | 2.2 | 167 | 10.4 |  |  |
| July 27 | 0.9 | 121 | 5.9 | 140 | 10.2 | 1.1 | 113 | 130 | 80 | 9.2 | 2 b | 134 | 8.4 | 55 | 8.4 |
| Aug 13 | 1.3 | 154 | 62.1 | 40 | 7.6 | <1 | 218 | 63.9 | 45 | 7.1 | 1 | 147 | 25.1 | 20 | 8.0 |
| Aug 30 | 1.0 | 160 | 106 | 100 | 9.9 | 0.7 | 303 | 20.9 | 90 | 9.3 | 2 b | 131 | 8.9 | 100 | 9.1 |
| Sept 8 | 0.8 | 198 | 89.4 | 80 | 8.9 | 0.7 | 252 | 110 | 70 | 8.8 | 2 b |  |  | 70 | 8.9 |
| Sept 30 |  | 77 | 30.7 | 65 | 8.4 | 1.8 | 220 | 68.8 | 70 | 7.4 |  |  |  | 55 | 7.4 |
| May-September Average |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.0 | 142 | 58.8 | 85 | 9 | 1.78 | 208 | 50.2 | 153 | 8 | 2.0 | 131 | 13.4 | 118 | 8 |
| Jun-September Average |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.0 | 142 | 58.8 | 85 | 9 | 1.75 | 230 | 60.3 | 139 | 8.3 | 2.0 | 130 | 13.4 | 68 | 8.2 |

Table 15. Stormwater pond water quality data 2011. Results for Secchi disc (SD) are in feet, total phosphorus (TP) are in ppb, and chlorophyll a (chl) are in ppb. Conductivity (Cond) is reported in umhos, and pH is in standard units.

| Lakes | Round Lake Pond (RLP) |  |  |  |  |  |  |  |  | Bren Lane Pond |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SD | TP | ChI | TKN | ORP | Cond | pH | Temp | DO | SD | TP | ChI | TKN | ORP | Cond | pH | Temp | DO |
| May 10 | 4.0 | 64 | 6.6 | -- | -- | 250 | 6.5 | 17.1 | 9.1 | 2.6 | 68 | 7.4 | -- | -- | 200 | 7.2 | 18.0 | 9.9 |
| May 27 | 2.1 | 88 | 15.1 | -- | -- | 220 | 7.70 | 17.7 | 12.7 | 2.7 | 84 | 11.1 | -- | -- | 195 | 7.28 | 17.3 | 10.7 |
| June 9 | 2.4 | 72 | 14.8 | -- | -- | 225 | 8.30 | 77 | -- | 2.5b | 159 | 22.4 | -- | -- | 195 | 8.63 | 77 | -- |
| June 27 | 2.2 | 104 | 21.3 | -- | -- | 160 | 9.12 | -- | -- | 2.5b | 77 | 1.7 | -- | -- | 140 | 9.55 | -- | -- |
| July 13 | 1.5 | 146 | 57.9 | -- | -- | -- | -- | 24.7 | 6.9 | 2.7 | 91 | 7.1 | -- | -- | -- | -- | 24.1 | 6.7 |
| July 29 | 1.8 | 137 | 42.7 | -- | -- | 105 | 7.09 | 27.0 | 10.2 | 3.1 | 160 | 4.8 | -- | -- | 90 | 8.27 | 24.9 | 6.21 |
| Aug 11 | 2.1 | 112 | 57.6 | -- | -- | 110 | 8.58 | 24.2 | 10.1 | 4.2 | 280 | 152 | -- | -- | 100 | 7.49 | 23.1 | 4.1 |
| Aug 23 | 1.4 | 137 | 36.0 | -- | -- | 100 | 7.99 | 25.2 | 7.5 | 4.0 | 89 | 44.6 | -- | -- | 95 | 7.46 | 23.5 | 8.2 |
| Sept 9 | 2.1 | 165 | 47.2 | 2.3 | 127 | 125 | 7.46 | 23.2 | 9.7 | 3.9 | 88 | 3.9 | 1.5 | 82 | 110 | 7.35 | 21.0 | 8.6 |
| Sept 23 | 1.8 | 183 | 38.4 | 2.4 | 120 | 125 | 7.37 | 15.0 | 8.1 | 4.2 | 79 | 4.6 | 1.4 | -- | 120 | 7.10 | 15.1 | 8.1 |
| May-September Average |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2.1 | 121 | 33.8 |  |  | 158 | 7.79 | 27.9 | 9.3 | \|3.2+ | 118 | 26.0 |  |  | 138 | 7.15 | 27.1 | 7.8 |
| Jun-September Average |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.9 | 132 | 39.5 |  |  | 136 | 7.99 | 30.9 | 8.8 | 3.4+ | 128 | 30.1 |  |  | 121 | 7.98 | 29.8 | 7.0 |


| Lakes | Park Pond |  |  |  |  |  |  |  |  | Round Pond C |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SD | TP | Chl | TKN | ORP | Cond | pH | Temp | DO | SD | TP | Chl | TKN | ORP | Cond | pH | Temp | DO |
| May 10 | 2.0b | 46 | 1.8 | -- | -- | 260 | 7.8 | 20.0 | 11.0 |  |  |  |  |  |  |  |  |  |
| May 27 | 2.5b | 35 | <1 | -- | -- | 270 | 7.67 | 18.0 | 11.5 |  |  |  |  |  |  |  |  |  |
| June 9 | 2.3b | 165 | 2.9 | -- | -- | 350 | 9.02 | 78 | -- |  |  |  |  |  |  |  |  |  |
| June 27 | 2.5b | 125 | 2.4 | -- | -- | 100 | 9.94 | -- | -- |  |  |  |  |  |  |  |  |  |
| July 13 | 2.0b | 124 | 3.1 | -- | -- | -- | -- | 24.6 | 5.31 |  |  |  |  |  |  |  |  |  |
| July 29 | 2.5b | 69 | 6.6 | -- | -- | 70 | 6.83 | 26.3 | 6.4 |  |  |  |  |  |  |  |  |  |
| Aug 11 | 2.0b | 78 | 1.7 | -- | -- | 90 | 7.16 | 23.1 | 6.5 |  |  |  |  |  |  |  |  |  |
| Aug 23/31 | 2.3b | 64 | 3.0 | -- | -- | 70 | 7.17 | 24.2 | 6.4 |  | 83 | 32.0 | 1.2 |  |  |  |  |  |
| Sept 9 | 2.0b | 48 | 2.4 | 0.7 | 49 | 120 | 7.13 | 20.6 | 7.7 | 2.0b | 108 | 23.3 | 1.2 | 102 | 275 | 8.66 | 22.1 | 18.1 |
| Sept 23 | -- | 61 | <1 | 1.9 | 29 | 150 | 7.26 | 14.1 | 7.2 | 3.8 | 135 | 107 | 1.7 | 129 | 310 | 8.61 | 16.6 | 18.0 |
| May-September Average |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \|2.2+ | 82 | 2.6 |  |  | 164 | 7.78 | 27.7 | 7.8 |  |  |  |  |  |  |  |  |  |
| Jun-September Average |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2.2+ | 92 | 2.9 |  |  | 136 | 7.79 | 30.1 | 6.6 |  |  |  |  |  |  |  |  |  |

Table 16. Stormwater pond water quality data for 2012. Results for Secchi disc (SD) are in feet, total phosphorus (TP), and chlorophyll a (Chl) are in ppb. Conductivity (Cond) is in umhos/cm ${ }^{2}$, pH is in standard units, temperature (Temp) is in ${ }^{\circ} \mathrm{C}$, and dissolved oxygen (DO) is in ppm.

| Lakes | Bren Lane |  |  |  |  |  |  | Park Pond |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Secchi <br> (ft) | $\begin{gathered} \text { TP } \\ (\mathrm{ppb}) \end{gathered}$ | $\begin{gathered} \mathrm{Chl} \\ (\mathrm{ppb}) \end{gathered}$ | Cond (umhos) | pH | Temp (C) | $\begin{gathered} \text { DO } \\ (\mathrm{ppm}) \end{gathered}$ | Secchi (ft) | $\begin{gathered} \text { TP } \\ (\mathrm{ppb}) \end{gathered}$ | Cond (umhos) | pH | Temp (C) | $\begin{gathered} \mathrm{DO} \\ (\mathrm{ppm}) \end{gathered}$ |
| May 9 | -- | -- | -- | - | -- | -- | -- | - | -- | -- | -- | -- | -- |
| $\left\lvert\, \begin{aligned} & \text { May } \\ & 29 \end{aligned}\right.$ | 4.4+ | 127 | 8.8 | 90 | 7.40 | 20.5 | 8.3 | -- | -- | -- | -- | -- | -- |
| June 11 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| $\left\lvert\, \begin{aligned} & \text { June } \\ & 27 \end{aligned}\right.$ | -- | 97 | -- | 100 | 7.20 | -- | -- | -- | 156 | 95 | 7.14 | -- | -- |
| $\left\lvert\, \begin{aligned} & \text { July } \\ & 10 \end{aligned}\right.$ | -- | 304 | -- | 60 | 6.70 | -- | -- | -- | -- | -- | -- | -- | -- |
| $\left\lvert\, \begin{aligned} & \text { July } \\ & 25 \end{aligned}\right.$ | -- | 216 | -- | 80 | 7.18 | -- | -- | -- | 60 | 50 | 7.65 | -- | -- |
| Aug 8 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| $\left\lvert\, \begin{aligned} & \text { Aug } \\ & 24 \end{aligned}\right.$ | 3.0+ | 87 | -- | 100 | 6.56 | 24.1 | 6.5 | $2.4+$ | 43 | 90 | -- | 25.1 | 5.6 |
| $\begin{aligned} & \text { Sept } \\ & 12 \end{aligned}$ | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| $\left\lvert\, \begin{aligned} & \text { Sept } \\ & 25 \end{aligned}\right.$ | 4.5+ | 75 | -- | 130 | 7.08 | 16.0 | 9.8 | 3.0+ | 63 | 150 | 7.36 | 16.8 | 9.8 |
| Oct 15 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| Oct 29 | -- | 238 | -- | 90 | 8.0 | 5.4 | 6.8 | -- | 152 | 70 | 8.0 | 4.9 | 10.8 |
| May-September Average |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4.0 | 151 | 8.8 | 93 | 7.0 | 20.2 | 8.2 | 2.7 | 81 | 96 | 7.4 | 21.0 | 7.7 |
| Jun-September Average |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3.8 | 156 | 0.0 | 94 | 6.9 | 20.1 | 8.2 | 2.7 | 81 | 96 | 7.4 | 21.0 | 7.7 |

* total phosphorus data were not used, the samples were suspected of being contaminated with sediments.

| Lakes | Red Rock Pond |  |  |  |  |  |  | Round Lake Pond |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Secchi <br> (ft) | $\begin{gathered} \text { TP } \\ (\mathrm{ppb}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { Chl } \\ (\mathrm{ppb}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { Cond } \\ \text { (umhos) } \\ \hline \end{gathered}$ | pH | Temp <br> (C) | $\begin{gathered} \text { DO } \\ (\mathrm{ppm}) \end{gathered}$ | Secchi <br> (ft) | $\begin{gathered} \text { TP } \\ (\mathrm{ppb}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { Cond } \\ \text { (umhos) } \\ \hline \end{gathered}$ | pH | Temp <br> (C) | $\begin{gathered} \text { DO } \\ (\mathrm{ppm}) \end{gathered}$ |
| May 9 | 1.8 | 179 | <1 | 100 | 7.03 | 22.0 | 11.1 | -- | -- | -- | -- | -- | -- |
| $\begin{aligned} & \text { May } \\ & 29 \end{aligned}$ | 3.3 | 192 | 14.4 | 75 | 8.64 | 20.5 | 8.3 | -- | -- | -- | -- | -- | -- |
| June <br> 11 | $2.0+$ | 182 | 7.8 | 80 | 8.30 | 25.6 | 8.7 | -- | -- | -- | -- | -- | -- |
| $\left\lvert\, \begin{aligned} & \text { June } \\ & 27 \end{aligned}\right.$ | 3.2 | 178 | 15.7 | 50 | 7.34 | 25.1 | 8.2 | -- | 90 | 100 | 7.83 | -- | -- |
| $\begin{array}{\|l\|l} \hline \text { July } \\ 10 \end{array}$ | 2.0 | 233 | 56.8 | 80 | 8.00 | 31.2 | 9.7 | -- | -- | -- | -- | -- | -- |
| $\begin{array}{\|l\|l} \text { July } \\ 25 \end{array}$ | $2.0+$ | 251 | 218 | 110 | 9.31 | 28.7 | 13.1 | -- | 212 | 110 | 7.26 | -- | -- |
| Aug 8 | -- | 273 | 40.9 | 140 | 8.3 | -- | -- | -- | -- | -- | -- | -- | -- |
| $\begin{array}{\|l} \text { Aug } \\ 24 \end{array}$ | 1.0+ | 272 | 58.4 | 120 | 7.1 | 24.1 | 7.1 | 2.0 | 100 | 100 | 8.3 | 26.0 | 8.6 |
| $\left\lvert\, \begin{aligned} & \text { Sept } \\ & 12 \end{aligned}\right.$ | 1.5 | 415 | 150 | 130 | 6.9 | 18.9 | 3.4 | -- | -- | -- | -- | -- | -- |
| $\left\lvert\, \begin{aligned} & \text { Sept } \\ & 25 \end{aligned}\right.$ | -- | 340 | 172 | 115 | 7.4 | 16.9 | 7.4 | 1.7 | 149 | 120 | 9.14 | 17.1 | 10.8 |
| Oct 15 | -- | 762 | 320 | 130 | 7.9 | -- | -- | -- | -- | -- | -- | -- | -- |
| Oct 29 | -- | 403 | 146 | 40 | 8.7 | 6.0 | 7.9 | -- | 182 | 90 | 8.0 | 5.7 | 9.7 |
| May-September Average |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2.1 | 252 | 73.5 | 100 | 7.8 | 23.7 | 8.6 | 1.9 | 138 | 108 | 8.1 | 21.6 | 9.7 |
| Jun-September Average |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2.0 | 268 | 90.0 | 103 | 7.8 | 24.4 | 8.2 | 1.9 | 138 | 108 | 8.1 | 21.6 | 9.7 |

[^0]
## Use of Barley Straw in Bren Lane Pond to Improve Water Quality

Historically barley straw has been used to control algal growth in ponds. Recent research results (McComas unpublished) indicate barley straw acts as an organic carbon amendment which stimulates carbon-limited microbial growth in ponds. Because barley straw has a unique characteristic of having a low phosphorus content, as the microbial community begins to multiply, it consumes the organic carbon in the barley, but is forced to obtain it's phosphorus requirements from the water column of a pond or lake. Based on field monitoring data, it appears that the installation of barley straw in ponds can result in a net phosphorus removal from the water column. Based on results from other ponds, it may be possible to achieve up to a $50 \%$ reduction in phosphorus outflow concentrations from stormwater ponds compared to a condition where no barley has been used (Steve McComas, unpublished).

## Barley Straw Results and Recommendations

The installation of barley straw into Bren Lane Pond appears to have reduced phosphorus concentrations from 2006 through 2012. Barley straw was not installed in 2013.

A water quality goal for the stormwater ponds is to maintain a seasonal total phosphorus concentration average of 150 ppb . Although the TP concentration in Bren Lane Pond is greater than 150 ppb in most years it is suspected fish may be contributing to elevated phosphorus concentrations negating the benefits of phosphorus reduction by barley straw.

Table 17. Existing phosphorus conditions and target conditions for pond phosphorus concentrations.

|  | Bren Lane (barley @ 400 lbs/ac) | RLP | Park (no barley) |
| :---: | :---: | :---: | :---: |
| Pond Characteristics |  |  |  |
| Pond size (ac) | 2.0 | 0.4 | 0.5 |
| Mean depth (ft) | 3.3 | 1.5 | 1.7 |
| Watershed size (ac) | 149 | 235 | 26 |
| Watershed:Pond ratio | 75 | 588 | 52 |
| Estimated and Predicted Pond Conditions based on P8 model loading estimates and using the MNLEAP lake model (loading estimates are from Barr 1999) |  |  |  |
| Predicted TP concentration (ppb)(2005 conditions) | 193 | 285 | 206 |
| Estimated watershed TP load (kg/year)(Barr 1999) | 25 kg | 40 kg | 4.4 kg |
| Estimated runoff TP FWMC (ppb) | 322 | 325 | 320 |
| Estimated pounds of phosphorus per watershed ac (kg/ac) | 0.37 | 0.37 | 0.37 |
| 2006 Observed TP concentration (ppb)(May-Sept) | 196 | 266 | 99 |
| Estimated watershed TP load in 2006 (kg) | 26 kg | 37 kg | 2.0 kg |
| 2007 Observed TP concentration (ppb)(May-Sept) | 286 | 362 | 292 |
| Estimated watershed TP load in 2007 (kg) | 41 kg | 52 kg | 7.0 kg |
| 2008 Observed TP concentration (ppb)(May-Sept) | 157 | 212 | 141 |
| Estimated watershed TP load in 2008 (kg) | 20 kg | 30 kg | 3.0 kg |
| 2009 Observed TP concentration (ppb)(May-Sept) | 264 | No data | 170 |
| Estimated watershed TP load in 2009 (kg) | 34 kg | -- | 3.4 kg |
| 2010 Observed TP concentration (ppb)(May-Sept) | 208 | 142 | 131 |
| Estimated watershed TP load in 2010 (kg) | 27 kg | 20 kg | 3.0 kg |
| 2011 Observed TP concentration (ppb)(May-Sept) | 118 | 121 | 82 |
| Estimated watershed TP load in 2011 (kg) | 15 kg | 17 kg | 1.9 kg |
| 2012 Observed TP concentration (ppb)(May-Sept) | 151 | 138 | 81 |
| Estimated watershed TP load in 2012 (kg) | 20 kg | 19 kg | 1.9 kg |

## Appendix

## Appendix A: Aquatic Plant Surveys for 2006-2012

## APPENDIX A: Aquatic Plant Survey Results

2006: Round Lake aquatic plant occurrences and densities for the May 30, 2006 survey based on 10 transects and 2 depths, for a total of 20 stations. Density ratings are $1-5$ with 1 being low and 5 being most dense.

|  | Depth 0-6 feet ( $\mathrm{n}=10$ ) |  |  | $\begin{gathered} \hline \text { Depth } 7-12 \text { feet } \\ (n=10) \end{gathered}$ |  |  | $\begin{gathered} \hline \text { All Stations } \\ (\mathrm{n}=20) \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Occur | \% Occur | Density | Occur | \% Occur | Density | Occur | \% Occur | Density |
| White waterlily (Nymphaea tuberosa) | 7 | 70 | 1.4 | 6 | 60 | 0.8 | 13 | 65 | 1.1 |
| Coontail (Ceratophyllum demersum) | 10 | 100 | 3.1 | 10 | 100 | 1.9 | 20 | 100 | 2.5 |
| Elodea <br> (Elodea canadensis) | -- | -- | -- | 1 | 10 | 0.1 | 1 | 5 | 0.1 |
| Eurasian watermilfoil (Myriophyllum spicatum) | 8 | 80 | 1.1 | 9 | 90 | 0.9 | 17 | 85 | 1.0 |
| Curlyleaf pondweed (Potamogeton crispus) | 1 | 10 | 0.6 | -- | -- | -- | 1 | 5 | 0.6 |
| Stringy pondweed (P. sp) | 2 | 20 | 0.8 | -- | -- | -- | 2 | 10 | 0.8 |
| Filamentous algae | 9 | 90 | 2.9 | 8 | 80 | 0.8 | 17 | 85 | 1.9 |

2006: Individual transect data for Round Lake on May 30, 2006.

|  | T1 |  | T2 |  | T3 |  | T4 |  | T5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily |  |  | 3 | 0.3 | 1 |  |  | 0.5 | 1 | 1 |
| Coontail | 2 | 2 | 3 | 1.3 | 3 | 1.8 | 3.5 | 1.5 | 4 | 2 |
| Elodea |  |  |  |  |  |  |  |  |  |  |
| Eurasian watermilfoil | 0.5 | 1 | 1 | 1.7 | 1 | 2 | 0.3 | 0.5 |  |  |
| Curlyleaf pondweed |  |  |  |  |  |  |  |  |  |  |
| Stringy pondweed | 0.5 |  |  |  |  |  | 1 |  |  |  |
| Filamentous algae |  | 0.7 | 3 | 0.7 | 2 | 1 | 2.5 | 1 | 5 |  |


|  | T6 |  | T7 |  | T8 |  | T9 |  | T10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily | 0.5 |  | 3 | 2 | 0.5 | 0.2 |  |  | 1 | 0.5 |
| Coontail | 3 | 2.8 | 3 | 2 | 4 | 1.5 | 2 | 2 | 3.5 | 2.5 |
| Elodea |  |  |  |  |  | 0.1 |  |  |  |  |
| Eurasian watermilfoil |  | 0.3 | 1.5 | 1.3 | 0.5 | 0.2 | 2 | 0.7 | 2 | 0.3 |
| Curlyleaf pondweed | 0.6 |  |  |  |  |  |  |  |  |  |
| Stringy pondweed |  |  |  |  |  |  |  |  |  |  |
| Filamentous algae | 4 | 1 | 2.5 |  | 2 | 0.5 | 3 | 0.7 | 2.5 | 0.5 |

2006: Round Lake aquatic plant occurrences and densities for the July 26, 2006 survey based on 10 transects and 2 depths, for a total of 20 stations. Density ratings are $1-5$ with 1 being low and 5 being most dense.

|  | $\begin{gathered} \text { Depth } 0-6 \text { feet } \\ (n=10) \end{gathered}$ |  |  | Depth 7-12 feet ( $\mathrm{n}=10$ ) |  |  | All Stations$(\mathrm{n}=20)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Occur | \% Occur | Density | Occur | \% Occur | Density | Occur | \% Occur | Density |
| Spatterdock (Nuphar variegatum) | 1 | 10 | 0.3 | -- | -- | -- | 1 | 5 | 0.3 |
| White waterlily (Nymphaea tuberosa) | 10 | 100 | 2.8 | 2 | 20 | 2.3 | 12 | 60 | 2.7 |
| Coontail (Ceratophyllum demersum) | 10 | 100 | 3.8 | 10 | 100 | 3.1 | 20 | 100 | 3.4 |
| Eurasian watermilfoil <br> (Myriophyllum spicatum) | 4 | 40 | 0.8 | 5 | 50 | 0.8 | 9 | 45 | 0.8 |
| Naiads (Najas flexilis) | 1 | 10 | 0.5 | -- | -- | -- | 1 | 5 | 0.5 |
| Filamentous algae | 5 | 50 | 2.6 | -- | -- | -- | 5 | 25 | 2.6 |

2006: Individual transect data for Round Lake on July 26, 2006.

|  | T1 |  | T2 |  | T3 |  | T4 |  | T5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| Spatterdock |  |  |  |  |  |  |  |  |  |  |
| White waterlily | 3.5 |  | 3 |  | 2 |  | 3 | 1.5 | 3 |  |
| Coontail | 2 | 4 | 5 | 1.8 | 5 | 5 | 5 | 3 | 4.5 | 3 |
| Eurasian watermilfoil | 0.5 |  |  | 0.5 | 1 | 1 |  |  |  | 1 |
| Naiads |  |  |  |  |  |  |  |  |  |  |
| Filamentous algae |  |  | 2 |  | 3 |  | 5 |  | 2 |  |
|  | T6 |  | T7 |  | T8 |  | T9 |  | T10 |  |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| Spatterdock |  |  | 0.3 |  |  |  |  |  |  |  |
| White waterlily | 3 |  | 1 | 3 | 2.5 |  | 4.5 |  | 2.5 |  |
| Coontail | 4.5 | 3.3 | 3.8 | 3 | 3.8 | 3.5 | 2.5 | 2 | 2 | 2 |
| Eurasian watermilfoil |  | 0.5 | 0.3 | 1 | 1.3 |  |  |  |  |  |
| Naiads |  |  |  |  |  |  |  |  | 0.5 |  |
| Filamentous algae | 1 |  |  |  |  |  |  |  |  |  |

2007: Round Lake aquatic plant occurrences and densities for the May 14, 2007 survey based on 10 transects and 2 depths, for a total of 20 stations. Density ratings are 1-5 with 1 being low and 5 being most dense.

|  | Depth$0-6$ feet ( $\mathrm{n}=10$ ) |  |  | $\begin{gathered} \text { Depth } \\ 7-12 \text { feet } \\ (n=10) \end{gathered}$ |  |  | All Stations ( $\mathrm{n}=20$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Occur | \% Occur | Density | Occur | \% Occur | Density | Occur | \% Occur | Density |
| White waterlily <br> (Nymphaea tuberosa) | 8 | 80 | 1.3 | 1 | 10 | 1.0 | 9 | 45 | 1.2 |
| Coontail (Ceratophyllum demersum) | 10 | 100 | 3.0 | 10 | 100 | 2.2 | 20 | 100 | 2.6 |
| Eurasian watermilfoil <br> (Myriophyllum spicatum) | 6 | 60 | 1.5 | 8 | 80 | 1.4 | 14 | 70 | 1.5 |
| Curlyleaf pondweed (Potamogeton crispus) | -- | -- | -- | 3 | 30 | 1.3 | 3 | 15 | 1.3 |
| Filamentous algae | 10 | 100 | 3.0 |  | 10 | 1 | 11 | 55 | 2.8 |

2007: Individual transect data for Round Lake on May 14, 2007.

|  | T1 |  | T2 |  | T3 |  | T4 |  | T5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily | 1 |  | 1 |  | 1 |  | 1 | 1 | 1 |  |
| Coontail | 3 | 2.5 | 2 | 2 | 4 | 1.5 | 1 | 1 | 3 | 3 |
| Eurasian watermilfoil | 2 | 1 | 2 | 2 |  | 2 | 1 | 2 |  | 1 |
| Curlyleaf pondweed |  |  |  | 1 |  |  |  |  |  |  |
| Filamentous algae | 0.5 |  | 3 |  | 4 |  | 2 |  | 4 |  |


|  | T6 |  | T7 |  | T8 |  | T9 |  | T10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily | 1 |  |  |  |  |  | 1 |  | 3 |  |
| Coontail | 3.5 | 3 | 4 | 2 | 3 | 2.5 | 3.5 | 2 | 3 | 2.3 |
| Eurasian watermilfoil |  | 1 |  | 1 | 1 | 1.5 | 2 |  | 1 |  |
| Curlyleaf pondweed |  | 2 |  | 1 |  |  |  |  |  |  |
| Filamentous algae | 4 |  | 3 |  | 4 |  | 2 | 1 | 3 |  |

2007: Round Lake aquatic plant occurrences and densities for the August 16, 2007 survey based on 10 transects and 2 depths, for a total of 20 stations. Density ratings are $1-5$ with 1 being low and 5 being most dense.

|  | Depth ( $\mathrm{n}=10$ ) |  |  | Depth$7-12$ feet$(n=10)$ |  |  | All Stations ( $\mathrm{n}=20$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Occur | \% Occur | Density | Occur | \% Occur | Density | Occur | \% Occur | Density |
| White waterlily (Nymphaea tuberosa) | 9 | 90 | 2.5 | 2 | 20 | 0.5 | 11 | 55 | 2.1 |
| Coontail (Ceratophyllum demersum) | 10 | 100 | 3.0 | 10 | 100 | 2.2 | 20 | 100 | 2.6 |
| Elodea <br> (Elodea canadensis) | 1 | 10 | 0.5 | -- | -- | -- | 1 | 5 | 0.5 |
| Eurasian watermilfoil (Myriophyllum spicatum) | 8 | 80 | 1.1 | 9 | 90 | 0.7 | 17 | 85 | 0.9 |
| Stringy pondweed (Potamogeton sp) | 1 | 10 | 1.0 | -- | -- | -- | 1 | 5 | 1.0 |
| Filamentous algae | 3 | 30 | 2.7 | -- | -- | -- | 3 | 15 | 2.7 |

2007: Individual transect data for Round Lake on August 16, 2007.

|  | T1 |  | T2 |  | T3 |  | T4 |  | T5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily | 1.5 |  | 3 |  | 2 |  | 3 |  | 3 | 0.5 |
| Coontail | 3 | 1.5 | 3 | 3 | 4 | 3 | 2 | 4 | 4 | 2 |
| Elodea | 0.5 |  |  |  |  |  |  |  |  |  |
| Eurasian watermilfoil | 0.5 | 0.5 | 2 | 1 |  | 2 | 2 | 0.5 | 0.5 | 0.5 |
| Stringy pondweed | 1 |  |  |  |  |  |  |  |  |  |
| Filamentous algae |  |  | 2 |  | 3 |  | 3 |  |  |  |


|  | T6 |  | T7 |  | T8 |  | T9 |  | T10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily | 3 |  | 2 |  |  |  | 2 | 0.5 | 3 |  |
| Coontail | 4 | 3 | 3 | 1.5 | 2 | 2 | 2 | 1 | 3 | 1 |
| Elodea |  |  |  |  |  |  |  |  |  |  |
| Eurasian watermilfoil | 1 | 0.5 |  | 0.5 | 1 | 0.5 | 0.5 |  | 1 | 0.5 |
| Stringy pondweed |  |  |  |  |  |  |  |  |  |  |
| Filamentous algae |  |  |  |  |  |  |  |  |  |  |

2008: Round Lake aquatic plant occurrences and densities for the May 28,2008 survey based on 10 transects and 2 depths, for a total of 20 stations. Density ratings are 1-5 with 1 being low and 5 being most dense.

|  | Depth$0-6$ feet ( $\mathrm{n}=10$ ) |  |  | Depth$7-12$ feet$(n=10)$ |  |  | $\begin{gathered} \text { All Stations } \\ (n=20) \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Occur | \% Occur | Density | Occur | \% Occur | Density | Occur | \% Occur | Density |
| White waterlily <br> (Nymphaea tuberosa) | 8 | 80 | 1.3 | -- | -- | -- | 8 | 40 | 1.3 |
| Coontail (Ceratophyllum demersum) | 10 | 100 | 3.0 | 10 | 100 | 2.2 | 20 | 100 | 2.6 |
| Eurasian watermilfoil (Myriophyllum spicatum) | 9 | 90 | 1.9 | 10 | 100 | 2.5 | 19 | 95 | 2.2 |
| Curlyleaf pondweed (Potamogeton crispus) | 2 | 20 | 0.8 | -- | -- | -- | 2 | 10 | 0.8 |
| Filamentous algae | 8 | 80 | 2.4 | 9 | 90 | 1.7 | 17 | 85 | 2.1 |

2008: Individual transect data for Round Lake on May 28, 2008.

|  | T1 |  | T2 |  | T3 |  | T4 |  | T5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily |  |  | 0.5 |  |  |  | 2 |  | 1 |  |
| Coontail | 2 | 1 | 2 | 2 | 4 | 2 | 4 | 3 | 4 | 2.3 |
| Eurasian watermilfoil | 2 | 2 | 0.5 | 4 | 1 | 4 |  | 3 | 1.5 | 2 |
| Curlyleaf pondweed |  |  |  |  |  |  |  |  | 0.5 |  |
| Filamentous algae | 3 | 2 | 1 |  | 3 | 2 | 3 | 2 | 1.5 | 1 |


|  | T6 |  | T7 |  | T8 |  | T9 |  | T10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily | 2 |  | 1 |  | 1 |  | 1 |  | 2 |  |
| Coontail | 4 | 3 | 3.5 | 4 | 2 | 2 | 2 | 2 | 2 | 1 |
| Eurasian watermilfoil | 1 | 1.5 | 1 | 2 | 3 | 1 | 4 | 2 | 3 | 3 |
| Curlyleaf pondweed | 1 |  |  |  |  |  |  |  |  |  |
| Filamentous algae |  | 0.5 | 2 | 2 |  | 1 | 2 | 2 | 4 | 3 |

2008: Round Lake aquatic plant occurrences and densities for the August 25, 2008 survey based on 10 transects and 2 depths, for a total of 20 stations. Density ratings are 1-5 with 1 being low and 5 being most dense.

|  | $\begin{gathered} \text { Depth } \\ 0-6 \text { feet } \end{gathered}$$(\mathrm{n}=10)$ |  |  | $\begin{gathered} \hline \text { Depth } \\ 7-12 \text { feet } \\ (n=10) \end{gathered}$ |  |  | All Stations ( $\mathrm{n}=20$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Occur | \% Occur | Density | Occur | \% Occur | Density | Occur | \% Occur | Density |
| White waterlily (Nymphaea tuberosa) | 9 | 90 | 3.7 | -- | -- | -- | 9 | 45 | 3.7 |
| Coontail (Ceratophyllum demersum) | 10 | 100 | 3.4 | 10 | 100 | 2.7 | 20 | 100 | 3.1 |
| Eurasian watermilfoil (Myriophyllum spicatum) | 10 | 100 | 2.7 | 10 | 100 | 2.5 | 20 | 100 | 2.7 |
| Filamentous algae | 5 | 50 | 3.0 | 1 | 10 | 5.0 | 6 | 30 | 1.3 |

2008: Individual transect data for Round Lake on August 25, 2008.

|  | T1 |  | T2 |  | T3 |  | T4 |  | T5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily | 4 |  | 4 |  | 4 |  | 2 |  | 4 |  |
| Coontail | 2 | 2 | 2 | 2 | 4 | 3 | 3 | 3.5 | 4 | 4 |
| Eurasian watermilfoil | 4 | 2 | 3.3 | 3 | 4 | 4.5 | 1 | 1 | 1 | 2 |
| Filamentous algae |  |  |  |  | 3 |  | 2 |  | 4 |  |


|  | T6 |  | T7 |  | T8 |  | T9 |  | T10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily | 4 |  | 5 |  | 3 |  | 3 |  |  |  |
| Coontail | 4 | 3 | 4 | 2 | 4 | 2 | 4 | 2 | 3 | 3 |
| Eurasian watermilfoil | 4 | 4.5 | 4.5 | 2 | 4 | 2 | 3 | 2 | 1 | 2 |
| Filamentous algae | 3 | 5 |  |  | 3 |  |  |  |  |  |

2009: Round Lake aquatic plant occurrences and densities for the June 9, 2009 surv ey based on 10 transects and 2 depths, for a total of 20 stations. Density ratings are 1-5 with 1 being low and 5 being most dense.

|  | Depth$0-6$ feet ( $\mathrm{n}=10$ ) |  |  | $\begin{gathered} \hline \text { Depth } \\ 7-12 \text { feet } \\ (n=10) \end{gathered}$ |  |  | All Stations ( $\mathrm{n}=20$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Occur | \% Occur | Density | Occur | \% Occur | Density | Occur | \% Occur | Density |
| White waterlily (Nymphaea tuberosa) | 8 | 80 | 2.1 | -- | -- | -- | 8 | 40 | 2.1 |
| Coontail (Ceratophyllum demersum) | 5 | 50 | 2.6 | 8 | 80 | 3.4 | 13 | 65 | 3.1 |
| Eurasian watermilfoil <br> (Myriophyllum spicatum) | 10 | 100 | 3.7 | 10 | 100 | 3.5 | 20 | 100 | 3.6 |
| Filamentous algae | 6 | 60 | 3.3 | -- | -- | -- | 6 | 30 | 3.3 |

2009: Individual transect data for Round Lake on June 9, 2009.

|  | T1 |  | T2 |  | T3 |  | T4 |  | T5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily | 2 |  | 4 |  | 1 |  | 3 |  | 2 |  |
| Coontail |  | 3 |  | 4 | 3 | 4 | 3 | 4 | 3 | 3 |
| Eurasian watermilfoil | 3 | 1 | 4.5 | 4.5 | 3 | 4.5 | 4.5 | 2 | 2 | 4.5 |
| Filamentous algae |  |  |  |  | 4 |  | 4 |  | 3 |  |


|  | T6 |  | T7 |  | T8 |  | T9 |  | T10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily |  |  |  |  | 2 |  | 2 |  | 1 |  |
| Coontail |  | 3 |  | 3 |  | 3 | 3 |  | 1 |  |
| Eurasian watermilfoil | 5 | 4.5 | 5 | 4.5 | 4 | 4.5 | 2 | 3.5 | 4 | 1 |
| Filamentous algae | 3 |  | 3 |  |  |  | 3 |  |  |  |

2009: Round Lake aquatic plant occurrences and densities for the August 31, 2009 survey based on 10 transects and 2 depths, for a total of 20 stations. Density ratings are 1-5 with 1 being low and 5 being most dense.

|  | Depth$0-6$ feet ( $\mathrm{n}=10$ ) |  |  | Depth$7-12$ feet$(n=10)$ |  |  | All Stations ( $\mathrm{n}=20$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Occur | \% Occur | Density | Occur | \% Occur | Density | Occur | \% Occur | Density |
| Duckweed (Lemna sp) | 1 | 10 | 1.0 | -- | -- | -- | 1 | 5 | 1.0 |
| White waterlily (Nymphaea tuberosa) | 10 | 100 | 2.6 | -- | -- | -- | 10 | 50 | 2.6 |
| Coontail (Ceratophyllum demersum) | 10 | 100 | 2.6 | 10 | 100 | 2.2 | 20 | 100 | 2.4 |
| Eurasian watermilfoil (Myriophyllum spicatum) | 10 | 100 | 1.9 | 10 | 100 | 2.3 | 20 | 100 | 2.1 |
| Stringy pondweed (Potamogeton sp) | 1 | 10 | 1.0 | -- | -- | -- | 1 | 5 | 1.0 |
| Filamentous algae - floating | 3 | 30 | 1.7 | -- | -- | -- | 3 | 15 | 1.7 |

2009: Individual transect data for Round Lake on August 31, 2009.

|  | T1 |  | T2 |  | T3 |  | T4 |  | T5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| Duckweed |  |  |  |  |  |  | 1 |  |  |  |
| White waterlily | 3 |  | 3 |  | 3 |  | 4 |  | 3 |  |
| Coontail | 1 | 2 | 3 | 2 | 3 | 3 | 3.5 | 3 | 3 | 3 |
| Eurasian watermilfoil | 3 | 3 | 2 | 2 | 1.5 | 3 | 2.5 | 2.5 | 2 | 2 |
| Stringy pondweed | 1 |  |  |  |  |  |  |  |  |  |
| Filamentous algae |  |  |  |  | 2 |  |  |  | 1.5 |  |


|  | T6 |  | T7 |  | T8 |  | T9 |  | T10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| Duckweed |  |  |  |  |  |  |  |  |  |  |
| White waterlily | 3 |  | 1 |  | 2 |  | 2 |  | 2 |  |
| Coontail | 3 | 3 | 1.5 | 2 | 2.5 | 1 | 3 | 1 | 2 | 2 |
| Eurasian watermilfoil | 1 | 2.5 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 3 |
| Stringy pondweed |  |  |  |  |  |  |  |  |  |  |
| Filamentous algae | 1.5 |  |  |  |  |  |  |  |  |  |

2010: Round Lake aquatic plant occurrences and densities for the May 25,2010 survey based on 10 transects and 2 depths, for a total of 20 stations. Density ratings are 1-5 with 1 being low and 5 being most dense.

|  | Depth$0-6$ feet ( $\mathrm{n}=10$ ) |  |  | Depth$7-12$ feet$(n=10)$ |  |  | $\begin{gathered} \text { All Stations } \\ (\mathrm{n}=20) \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Occur | \% Occur | Density | Occur | \% Occur | Density | Occur | \% Occur | Density |
| White waterlily <br> (Nymphaea tuberosa) | 5 | 50 | 1.6 | -- | -- | -- | 5 | 25 | 1.6 |
| Coontail (Ceratophyllum demersum) | 9 | 90 | 2.7 | 9 | 90 | 2.5 | 18 | 90 | 2.6 |
| Eurasian watermilfoil (Myriophyllum spicatum) | 10 | 100 | 4.0 | 10 | 100 | 3.2 | 20 | 100 | 3.6 |
| Filamentous algae - floating | 9 | 90 | 1.6 | 2 | 20 | 0.8 | 11 | 55 | 1.4 |

2010: Individual transect data for Round Lake on May 25, 2010.

|  | T1 |  | T2 |  | T3 |  | T4 |  | T5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily |  |  | 1 |  |  |  | 3 |  | 2 |  |
| Coontail | 1 | 2 | 3 | 1 | 2.5 | 2 | 3 | 3.5 | 3.5 | 3 |
| Eurasian watermilfoil | 4 | 2 | 4 | 4 | 4.5 | 4.5 | 1 | 2 | 3 | 2 |
| Filamentous algae - floating |  |  | 1 |  | 3 |  | 2 |  | 2 | 1 |


|  | T6 |  | T7 |  | T8 |  | T9 |  | T10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily | 1 |  |  |  |  |  |  |  | 1 |  |
| Coontail | 2 | 4 | 3 | 1 | 3 | 3 | 3 | 3 |  |  |
| Eurasian watermilfoil | 5 | 3 | 5 | 2.8 | 4.5 | 4 | 4.5 | 4.5 | 4 | 4 |
| Filamentous algae - floating | 1 |  | 2 | 0.5 | 1 |  | 1 |  | 1 |  |

2010: Round Lake aquatic plant occurrences and densities for the July 9, 2010 survey based on 10 transects and 2 depths, for a total of 20 stations. Density ratings are $1-5$ with 1 being low and 5 being most dense.

|  | Depth$0-6$ feet ( $\mathrm{n}=10$ ) |  |  | Depth$7-12$ feet$(n=10)$ |  |  | All Stations ( $\mathrm{n}=20$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Occur | \% Occur | Density | Occur | \% Occur | Density | Occur | \% Occur | Density |
| White waterlily (Nymphaea tuberosa) | 9 | 90 | 3.5 | -- | -- | -- | 9 | 45 | 3.5 |
| Coontail (Ceratophyllum demersum) | 9 | 90 | 3.2 | 9 | 90 | 3.1 | 18 | 90 | 3.5 |
| Eurasian watermilfoil (Myriophyllum spicatum) | 2 | 80 | 2.0 | 10 | 100 | 2.5 | 18 | 90 | 2.3 |
| Filamentous algae - floating | 9 | 90 | 2.6 | 2 | 20 | 2.5 | 11 | 55 | 2.6 |

2010: Individual transect data for Round Lake on July 9, 2010.

|  | T1 |  | T2 |  | T3 |  | T4 |  | T5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily | 3 |  | 4 |  | 3 |  | 4 |  | 4 |  |
| Coontail | 3.5 | 4 | 2 | 4 | 4 | 2.5 | 4 | 4 | 4 |  |
| Eurasian watermilfoil |  | 1 | 1 | 2.5 | 1 | 2 | 2 | 1 |  | 4.5 |
| Filamentous algae | 1 |  | 4 |  | 4 |  | 4 |  | 2 | 3 |


|  | T6 |  | T7 |  | T8 |  | T9 |  | T10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 | 0-6 | 7-12 |
| White waterlily |  |  | 3.5 |  | 3 |  | 4 |  | 3 |  |
| Coontail | 4 | 4.5 | 1 | 2 | 4 | 4 | 2 | 2 |  | 1 |
| Eurasian watermilfoil | 2 | 3 | 3 | 3 | 2 | 2 | 1 | 3 | 4 | 3 |
| Filamentous algae | 3 | 2 | 4 |  | 0.5 |  |  |  | 1 |  |

2011: Round Lake aquatic plant occurrences and densities for the June 9, 2011 surv ey based on 49 sample sites. Density ratings are 1-5 with 1 being low and 5 being most dense.

|  | Occur | All Stations <br> ( $\mathrm{n}=49$ Ocur | Density |
| :--- | :---: | :---: | :---: |
| White waterlily <br> (Nymphaea tuberosa) <br> Coontail <br> (Ceratophyllum demersum) | 17 | 35 | 1.4 |
| Chara <br> (Chara sp) | 24 | 49 | 2.5 |
| Elodea <br> (Elodea canadensis) | 2 | 4 | 1.5 |
| Eurasian watermilfoil <br> (Myriophyllum spicatum) | 5 | 10 | 1.0 |
| Curlyleaf pondweed <br> (Potamogeton crispus) | 14 | 29 | 1.3 |
| Stringy pondweed <br> (P. sp) | 3 | 6 | 1.3 |
| Filamentous algae - benthic <br> Filamentous algae - floating | 7 | 14 | 1.7 |

2011: Individual transect data for Round Lake on June 9, 2011.

| site | depth <br> (ft) | White waterlily | Chara | Coontail | Curlyleaf | Elodea | Eurasian watermilfoil | Stringy pondweed | FA benthic | $\begin{gathered} \text { FA } \\ \text { floating } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 2 | 2 |  |  |  |  | 2 |  |  |
| 2 | 5 | 2 |  |  |  | 1 | 2 | 1 |  |  |
| 3 | 5 | 1 |  | 1 |  | 1 | 1 | 2 |  |  |
| 4 |  |  |  |  |  |  |  |  |  |  |
| 5 | 5 | 2 |  | 2 | 1 |  |  | 1 |  |  |
| 6 | 6 | 1 |  | 3 |  |  |  |  |  |  |
| 7 | 6 |  |  | 2 |  |  |  |  |  |  |
| 8 | 12 |  |  | 2 |  |  | 2 |  |  |  |
| 9 | 11 |  |  | 2 |  |  |  |  |  |  |
| 10 | 5 | 2 |  | 3 |  |  | 0.5 |  |  |  |
| 11 | 5 | 2 |  | 2 |  |  | 0.5 | 1 |  |  |
| 12 | 5 |  |  | 2 |  |  | 2 |  | 2 |  |
| 13 | 7 | 1 |  | 4 |  |  | 2 |  |  |  |
| 14 | 11 |  |  | 1 |  |  | 0.5 |  |  |  |
| 15 | TD |  |  |  |  |  | 1 |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 | 8 | 1 |  | 4 |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 | 4 |  |  |  |  |  |  | 3 |  |  |
| 20 | 6 | 1 |  | 3 |  |  | 1 |  |  | 1 |
| 21 | 12 |  |  | 1 |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |
| 24 |  |  |  |  |  |  |  |  |  |  |
| 25 | TD |  |  |  |  |  |  |  |  |  |
| 26 | 5 |  |  | 2 |  |  |  |  |  |  |
| 27 |  |  |  |  |  |  |  |  |  | 4 |
| 28 |  |  |  |  |  |  |  |  |  |  |
| 29 | 5 | 2 |  |  |  |  |  | 2 |  |  |
| 30 | 12 |  |  | 1.5 |  |  |  |  |  |  |
| 31 |  |  |  |  |  |  |  |  |  |  |
| 32 |  |  |  |  |  |  |  |  |  |  |
| 33 |  |  |  |  |  |  |  |  |  |  |
| 34 | TD |  |  |  |  |  |  |  |  |  |
| 35 | 6 | 1 |  | 2 |  |  |  |  |  |  |
| 36 |  |  |  |  |  |  |  |  |  |  |
| 37 |  |  |  | 4 |  |  |  |  |  |  |
| 38 | 7 | 1 |  | 3 |  |  |  |  |  |  |
| 39 |  |  |  |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |  |  |  |
| 41 |  |  |  |  |  |  |  |  |  |  |
| 42 | TD |  |  |  |  |  |  |  |  |  |
| 43 | 6 | 1 |  | 3 |  |  |  |  |  |  |
| 44 |  |  |  |  |  |  |  |  |  |  |
| 45 | 5 |  | 1 | 3 |  | 1 | 1 |  |  | 4 |
| 46 |  | 1 |  | 4 |  |  | 1 |  |  | 5 |
| 47 | 5 | 1 |  | 2 | 1 | 1 | 1 |  |  |  |
| 48 | 5 |  |  |  | 2 | 1 |  |  |  |  |
| 49 | 5 | 2 |  | 4 |  |  | 2 |  |  |  |
|  |  | 1.4 | 1.5 | 2.5 | 1.3 | 1.0 | 1.3 | 1.7 | 2.0 | 3.5 |
| occurre | (49 sites) | 17 | 2 | 24 | 3 | 5 | 14 | 7 | 1 | 4 |
| \% | nce | 35 | 4 | 49 | 6 | 10 | 29 | 14 | 2 | 8 |

2011: Round Lake aquatic plant occurrences and densities for the September 12, 2011 surv ey based on 34 sample sites. Density ratings are 1-5 with 1 being low and 5 being most dense.

|  | All Stations <br> $(\mathrm{n}=34)$ |  |  |
| :--- | :---: | :---: | :---: |
| White waterlily <br> (Nymphaea tuberosa) | Occur | \% Occur | Density |
| Coontail <br> (Ceratophyllum demersum) <br> Elodea <br> (Elodea canadensis) | 19 | 56 | 2.9 |
| Eurasian watermilfoil <br> (Myriophyllum spicatum) | 28 | 82 | 2.3 |
| Naiads <br> (Najas flexilis) | 1 | 3 | 0.5 |
| Floatingleaf pondweed <br> (Potamogeton natans) | 1 | 15 | 1.3 |
| Stringy pondweed <br> (P. sp) | 1 | 3 | 1.0 |
| Filamentous algae - floating | 2 | 3 | 1.0 |

2011: Individual transect data for Round Lake on September 12, 2011.

| site | depth <br> (ft) | White waterlily | Coontail | Elodea | Eurasian watermilfoil | Floatingleaf pondweed | Naiads | Stringy pondweed | $\begin{gathered} \text { FA } \\ \text { floating } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 1 | 2 |  |  |  |  |  | 1 |
| 2 | 3 | 2 | 2 |  |  |  |  |  | 4 |
| 3 | 5 | 4 | 0.5 |  |  | 1 | 1 |  | 1 |
| 5 | 4 | 4 | 2 |  |  |  |  |  | 2 |
| 6 | 6 | 2 | 3 |  |  |  |  | 0.5 | 3 |
| 7 | 7 | 1 | 1 |  | 3 |  |  |  | 2 |
| 8 | 8 |  | 3 |  |  |  |  |  |  |
| 9 | 7 |  | 2 |  | 1 |  |  | 1 |  |
| 10 | 5 | 3 | 3 |  | 1 |  |  |  | 2 |
| 11 | 1 | 2 | 2 |  |  |  |  |  | 2 |
| 12 | 5 | 4 | 2 |  |  |  |  |  | 4 |
| 13 | 7 |  | 2 |  |  |  |  |  |  |
| 14 | 12 |  | 1 |  |  |  |  |  |  |
| 15 | 26 |  |  |  |  |  |  |  |  |
| 17 | 8 |  | 2 |  |  |  |  |  |  |
| 18 | land |  |  |  |  |  |  |  |  |
| 19 | 3 | 5 | 2 |  |  |  |  |  | 3 |
| 20 | 5 | 5 | 2 |  |  |  |  |  | 4 |
| 21 | 9 |  | 2 |  |  |  |  |  |  |
| 26 | 4.5 | 2.5 | 2.5 | 0.5 | 0.5 |  |  |  | 1 |
| 28 | land |  |  |  |  |  |  |  |  |
| 29 | 5 | 4 | 2 |  |  |  |  |  | 5 |
| 30 | 9 |  | 3 |  |  |  |  |  |  |
| 37 | 6 | 3 | 3 |  |  |  |  |  | 4 |
| 38 | 6 | 2 | 3 |  |  |  |  |  | 5 |
| 39 | 7 |  | 4 |  |  |  |  |  | 1 |
| 40 | 16 |  |  |  |  |  |  |  |  |
| 42 | 9 |  | 2 |  | 1 |  |  |  |  |
| 43 | 6 | 1 | 3 |  |  |  |  |  | 5 |
| 45 | land |  |  |  |  |  |  |  |  |
| 46 | 3 | 4 | 2 |  |  |  |  |  | 5 |
| 47 | 4 | 4 | 3 |  |  |  |  |  | 4 |
| 48 | 4 | 2 | 3 |  |  |  |  |  | 4 |
| 49 | land |  |  |  |  |  |  |  |  |
| Average |  | 2.9 | 2.3 | 0.5 | 1.3 | 1.0 | 1.0 | 0.8 | 3.1 |
| occurrence ( 34 sites) |  | 19 | 28 | 1 | 5 | 1 | 1 | 2 | 20 |
| \% occurrence |  | 56 | 82 | 3 | 15 | 3 | 3 | 6 | 59 |

2012: Round Lake aquatic plant occurrences and densities for the May 17, 2012 survey based on 49 sample sites. Density ratings are 1-5 with 1 being low and 5 being most dense.

|  |  | All Stations <br> (n=49) <br> \% Occurrence | Density |
| :--- | :---: | :---: | :---: |
| Spatterdock <br> (Nuphar variegatum) <br> White waterlily <br> (Nymphaea tuberosa) | Occurrence | 2 | 1.0 |
| Coontail <br> (Ceratophyllum demersum) <br> Elodea <br> (Elodea canadensis) | 1 | 31 | 1.0 |
| Eurasian watermilfoil <br> (Myriophyllum spicaturm) <br> Curlyleaf pondweed <br> (Potamogeton crispus) | 33 | 67 | 2.5 |
| Stringy pondweed <br> (P. sp) | 5 | 10 | 1.0 |
| Flatstem pondweed <br> (P. zosteriformis) | 14 | 29 | 1.3 |
| Buttercup <br> (Ranunculus sp) | 7 | 14 | 1.0 |
| Filamentous algae - floating | 1 | 2 | 1.0 |

2012: Individual transect data for Round Lake on May 17, 2012.

| Site | Depth <br> (ft) | Spatterdock | White waterlily | Buttercup | Coontail | Curlyleaf pondweed | Elodea | Eurasian watermilfoil | Flatstem pondweed | Stringy pondweed | $\begin{gathered} \text { FA } \\ \text { floating } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | 1 | 1 |  | 2 | 1 |  | 1 |  |  | 1 |
| 2 | 4 |  | 1 |  | 2 | 1 |  | 1 | 1 |  | 3 |
| 3 | 4 |  | 1 |  | 2 | 1 | 1 | 2 |  |  | 1 |
| 4 | 3 |  |  |  | 2 |  | 1 | 1 |  |  |  |
| 5 | 4 |  | 1 |  |  |  |  | 1 |  | 1 | 1 |
| 6 | 5 |  |  |  | 4 | 1 |  |  |  |  |  |
| 7 | 6 |  |  |  | 2 |  |  | 4.5 |  |  |  |
| 8 | 8 |  |  |  | 3 |  |  |  |  |  |  |
| 9 | 7 |  |  |  | 2 |  |  | 1 |  |  |  |
| 10 | 6 |  | 1 |  | 4 |  |  |  |  |  |  |
| 11 | 4 |  |  |  | 2 | 1 | 1 | 1 |  | 1 | 3 |
| 12 | 4 |  |  |  | 2 |  |  | 1 |  |  | 3 |
| 13 | 5 |  | 1 |  | 3 |  |  |  |  |  |  |
| 14 | 9 |  |  |  | 3 | 1 |  | 1 |  |  |  |
| 15 | 25 |  |  |  |  |  |  |  |  |  |  |
| 16 | 22 |  |  |  |  |  |  |  |  |  |  |
| 17 | 12 |  |  |  | 1 |  |  |  |  |  |  |
| 18 | 1 |  |  |  |  |  |  |  |  |  |  |
| 19 | 3 |  | 1 |  | 1 |  |  |  |  | 1 | 3 |
| 20 | 5 |  | 1 |  | 3 |  |  |  |  |  | 1 |
| 21 | 9 |  |  |  | 4 |  |  |  |  |  |  |
| 22 | 25 |  |  |  |  |  |  |  |  |  |  |
| 23 | 30 |  |  |  |  |  |  |  |  |  |  |
| 24 | 35 |  |  |  |  |  |  |  |  |  |  |
| 25 | 27 |  |  |  |  |  |  |  |  |  |  |
| 26 | 6 |  |  |  | 2 |  |  | 1 |  |  |  |
| 27 | land |  |  |  |  |  |  |  |  |  |  |
| 28 | 2 |  |  |  | 1 |  |  |  |  |  | 3 |
| 29 | 3 |  |  |  | 3 |  |  |  |  |  | 3 |
| 30 | 8 |  |  | 2 | 3 |  |  | 1 |  |  |  |
| 31 | 25 |  |  |  |  |  |  |  |  |  |  |
| 32 | 30 |  |  |  |  |  |  |  |  |  |  |
| 33 | 35 |  |  |  |  |  |  |  |  |  |  |
| 34 | 31 |  |  |  |  |  |  |  |  |  |  |
| 35 | 5 |  |  |  | 4 |  |  | 1 |  |  | 1 |
| 36 | 2 |  |  |  | 1 |  |  |  |  |  | 3 |
| 37 | 5 |  |  |  | 4 | 1 |  |  |  |  |  |
| 38 | 6 |  | 1 |  | 4 |  |  |  |  |  |  |
| 39 | 10 |  |  |  | 3 |  |  |  |  |  |  |
| 40 | 15 |  |  |  |  |  |  |  |  |  |  |
| 41 | 17 |  |  |  |  |  |  |  |  |  |  |
| 42 | 17 |  |  |  |  |  |  |  |  |  |  |
| 43 | 4 |  | 1 |  | 3 |  |  |  |  |  | 2 |
| 44 | 3 |  | 1 |  | 2 |  |  |  |  |  | 2 |
| 45 | 4 |  | 1 |  | 2 |  |  |  |  |  | 4 |
| 46 | 5 |  |  |  | 1 |  | 1 |  |  |  |  |
| 47 | 5 |  | 1 |  | 3 |  |  |  |  |  |  |
| 48 | 5 |  | 1 |  | 2 |  | 1 |  |  |  |  |
| 49 | 5 |  | 1 |  | 2 |  |  | 1 |  |  | 3 |
| Average |  | 1.0 | 1.0 | 2.0 | 2.5 | 1.0 | 1.0 | 1.3 | 1.0 | 1.0 | 2.3 |
| occurrence (49 sites) |  | 1 | 15 | 1 | 33 | 7 | 5 | 14 | 1 | 3 | 16 |
| \% occurrence |  | 2 | 31 | 2 | 67 | 14 | 10 | 29 | 2 | 6 | 33 |

2012: Round Lake aquatic plant occurrences and densities for the August 1, 2012 survey based on 49 sample sites. Density ratings are $1-5$ with 1 being low and 5 being most dense.

|  | Occur | All Stations <br> \% $\mathrm{n}=49$ Ocur | Density |
| :--- | :---: | :---: | :---: |
| Spatterdock <br> (Nuphar variegatum) <br> White waterlily <br> (Nymphaea tuberosa) <br> Coontail <br> (Ceratophyllum demersum) | 1 | 2 | 2.0 |
| Elodea <br> (Elodea canadensis) | 25 | 51 | 3.2 |
| Eurasian watermilfoil <br> (Myriophyllum spicaturm) | 29 | 59 | 3.7 |
| Floatingleaf pondweed <br> (P. natans) | 2 | 4 | 1.0 |
| Stringy pondweed <br> (P. sp) | 4 | 8 | 1.0 |
| Filamentous algae | 1 | 2 | 1.0 |

2012: Individual transect data for Round Lake on August 1, 2012.

| site | depth <br> (ft) | Spatterdock | White waterlily | Coontail | Elodea | Eurasian watermilfoil | Floatingleaf pondweed | Stringy pondweed | FA floating |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 2 | 2 | 4 |  |  |  |  |  |
| 2 | 4 |  | 4 | 4 | 1 |  |  |  |  |
| 3 | 5 |  | 5 | 4.5 |  | 1 |  |  | 1 |
| 4 | land |  |  |  |  |  |  |  |  |
| 5 | 4 |  | 5 |  |  |  |  |  |  |
| 6 | 6 |  | 4 | 4 |  | 1 |  |  |  |
| 7 | 7 |  |  | 3 |  |  |  |  |  |
| 8 | 9 |  |  | 1 |  |  |  |  |  |
| 9 | 8 |  | 1 | 2 |  |  |  |  |  |
| 10 | 4 |  | 1 | 3 | 1 | 1 | 1 | 1 |  |
| 11 | 4 |  | 5 | 4 |  |  |  |  |  |
| 12 | 5 |  | 5 | 4 |  |  |  |  |  |
| 13 | 6 |  | 2 | 4.5 |  |  |  |  | 1 |
| 14 | 13 |  |  |  |  |  |  |  |  |
| 15 | 25 |  |  |  |  |  |  |  |  |
| 16 | 20 |  |  |  |  |  |  |  |  |
| 17 | 7 |  | 1 | 4 |  |  |  |  |  |
| 18 | land |  |  |  |  |  |  |  |  |
| 19 | 4 |  | 5 | 4 |  |  |  |  |  |
| 20 | 5 |  | 5 | 4.5 |  |  |  |  |  |
| 21 | 8 |  | 2 | 3 |  |  |  |  |  |
| 22 | 23 |  |  |  |  |  |  |  |  |
| 23 | 32 |  |  |  |  |  |  |  |  |
| 24 | 32 |  |  |  |  |  |  |  |  |
| 25 | 25 |  |  |  |  |  |  |  |  |
| 26 | 4 |  |  | 1 |  | 1 |  |  |  |
| 27 | land |  |  |  |  |  |  |  |  |
| 28 | 4 |  | 4 | 4 |  |  |  |  | 3 |
| 29 | 6 |  | 2 | 3 |  |  |  |  | 4 |
| 30 | 13 |  |  |  |  |  |  |  |  |
| 31 | 28 |  |  |  |  |  |  |  |  |
| 32 | 32 |  |  |  |  |  |  |  |  |
| 33 | 35 |  |  |  |  |  |  |  |  |
| 34 | 30 |  |  |  |  |  |  |  |  |
| 35 | 6 |  |  | 4 |  |  |  |  |  |
| 36 | 3 |  | 4 | 4 |  |  |  |  | 4 |
| 37 | 5 |  | 2 | 4 |  |  |  |  | 4 |
| 38 | 6 |  | 2 | 5 |  |  |  |  | 2 |
| 39 | 8 |  |  |  |  |  |  |  |  |
| 40 | 23 |  |  |  |  |  |  |  |  |
| 41 | 20 |  |  |  |  |  |  |  |  |
| 42 | 19 |  |  |  |  |  |  |  |  |
| 43 | 4 |  | 3 | 4 |  |  |  |  | 1 |
| 44 | 3 |  | 5 | 4 |  |  |  |  | 2 |
| 45 | 5 |  |  | 4.5 |  |  |  |  | 4 |
| 46 | 5 |  | 1 | 4 |  |  |  |  | 2 |
| 47 | 6 |  | 4 | 4 |  |  |  |  | 1 |
| 48 | 6 |  | 4 | 4.5 |  |  |  |  |  |
| 49 | 6 |  | 3 | 4 |  |  |  |  | 1 |
| Average |  | 2.0 | 3.2 | 3.7 | 1.0 | 1.0 | 1.0 | 1.0 | 2.3 |
| occurrence (49 sites) |  | 1 | 25 | 29 | 2 | 4 | 1 | 1 | 13 |
| \% occurrence |  | 2 | 51 | 59 | 4 | 8 | 2 | 2 | 27 |


[^0]:    * total phosphorus data were not used, the samples were suspected of being contaminated with sediments.

